
MATLAB®

Object-Oriented Programming

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Object-Oriented Programming
© COPYRIGHT 1984–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2008 Online only New for MATLAB 7.6 (Release 2008a)
October 2008 Online only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
March 2016 Online only Revised for Version 9.0 (Release 2016a)
September 2016 Online only Revised for Version 9.1 (Release 2016b)
March 2017 Online only Revised for Version 9.2 (Release 2017a)
September 2017 Online only Revised for Version 9.3 (Release 2017b)
March 2018 Online only Revised for MATLAB 9.4 (Release 2018a)
September 2018 Online only Revised for Version 9.5 (Release 2018b)
March 2019 Online only Revised for MATLAB 9.6 (Release 2019a)
September 2019 Online only Revised for MATLAB 9.7 (Release 2019b)

Using Object-Oriented Design in MATLAB
1

Why Use Object-Oriented Design . 1-2
Approaches to Writing MATLAB Programs 1-2
When Should You Create Object-Oriented Programs 1-3

Handle Object Behavior . 1-9
What Is a Handle? . 1-9
Copies of Handles . 1-9
Handle Objects Modified in Functions 1-10
Determine If an Object Is a Handle . 1-12
Deleted Handle Objects . 1-12

Basic Example
2

Create a Simple Class . 2-2
Design Class . 2-2
Create Object . 2-3
Access Properties . 2-3
Call Methods . 2-4
Add Constructor . 2-4
Vectorize Methods . 2-5
Overload Functions . 2-6
BasicClass Code Listing . 2-7

v

Contents

MATLAB Classes Overview
3

Role of Classes in MATLAB . 3-2
Classes . 3-2
Some Basic Relationships . 3-4

Developing Classes — Typical Workflow 3-8
Formulating a Class . 3-8
Specifying Class Components . 3-9
BankAccount Class Implementation 3-10
Formulating the AccountManager Class 3-14
Implementing the AccountManager Class 3-15
AccountManager Class Synopsis . 3-15
Using BankAccount Objects . 3-17

Representing Structured Data with Classes 3-19
Objects as Data Structures . 3-19
Structure of the Data . 3-19
The TensileData Class . 3-20
Create an Instance and Assign Data 3-20
Restrict Properties to Specific Values 3-21
Simplifying the Interface with a Constructor 3-22
Calculate Data on Demand . 3-23
Displaying TensileData Objects . 3-24
Method to Plot Stress vs. Strain . 3-25
TensileData Class Synopsis . 3-26

Implementing Linked Lists with Classes 3-31
Class Definition Code . 3-31
dlnode Class Design . 3-31
Create Doubly Linked List . 3-32
Why a Handle Class for Linked Lists? 3-34
dlnode Class Synopsis . 3-34
Specialize the dlnode Class . 3-46

vi Contents

Static Data
4

Static Data . 4-2
What Is Static Data . 4-2
Static Variable . 4-2
Static Data Object . 4-3
Constant Data . 4-5

Class Definition—Syntax Reference
5

Class Files and Folders . 5-2
Class Definition Files . 5-2
Options for Class Folders . 5-2
Options for Class Files . 5-2
Group Classes with Package Folders . 5-3

Class Components . 5-5
Class Building Blocks . 5-5
Class Definition Block . 5-5
Properties Block . 5-6
Methods Block . 5-6
Events Block . 5-7
A Complete Class . 5-8
Enumeration Classes . 5-8
Related Information . 5-9

Classdef Block . 5-10
How to Specify Attributes and Superclasses 5-10
Class Attribute Syntax . 5-10
Superclass Syntax . 5-11
Local Functions in Class File . 5-11

Class Properties . 5-12
The Properties Block . 5-12
Access to Property Values . 5-13

vii

Methods and Functions . 5-15
The Methods Block . 5-15
Method Calling Syntax . 5-15
Private Methods . 5-17
More Detailed Information on Methods 5-17
Class-Related Functions . 5-17
How to Overload Functions and Operators 5-18
Rules for Defining Methods in Separate Files 5-18

Events and Listeners . 5-20
Define and Trigger Events . 5-20
Listen for Events . 5-20

Attribute Specification . 5-22
Attribute Syntax . 5-22
Attribute Descriptions . 5-22
Attribute Values . 5-23
Simpler Syntax for true/false Attributes 5-23

Call Superclass Methods on Subclass Objects 5-25
Superclass Relation to Subclass . 5-25
How to Call Superclass Methods . 5-25
How to Call Superclass Constructor 5-26

Representative Class Code . 5-28
Class Calculates Area . 5-28
Description of Class Definition . 5-31

MATLAB Code Analyzer Warnings . 5-34
Syntax Warnings and Property Names 5-34
Variable/Property Name Conflict Warnings 5-34
Exception to Variable/Property Name Rule 5-35

Objects In Conditional Statements . 5-37
Enable Use of Objects in Conditional Statements 5-37
How MATLAB Evaluates Switch Statements 5-37
How to Define the eq Method . 5-39
Enumerations in Switch Statements 5-41

Operations on Objects . 5-44
Object Operations . 5-44
Help on Objects . 5-45
Functions to Test Objects . 5-47

viii Contents

Functions to Query Class Components 5-47

Use of Editor and Debugger with Classes 5-49
Write Class Code in the Editor . 5-49
How to Refer to Class Files . 5-49
How to Debug Class Files . 5-50

Automatic Updates for Modified Classes 5-51
When MATLAB Loads Class Definitions 5-51
Consequences of Automatic Update 5-52
What Happens When Class Definitions Change 5-52
Actions That Do Not Trigger Updates 5-53
Multiple Updates to Class Definitions 5-53
Object Validity with Deleted Class File 5-53
When Updates Are Not Possible . 5-53
Potential Consequences of Class Updates 5-54
Updates to Class Attributes . 5-54
Updates to Property Definitions . 5-55
Updates to Method Definitions . 5-56
Updates to Event Definitions . 5-57

Compatibility with Previous Versions 5-59
New Class-Definition Syntax Introduced with MATLAB Software

Version 7.6 . 5-59
Changes to Class Constructors . 5-60
New Features Introduced with Version 7.6 5-61
Examples of Old and New . 5-61

Comparison of MATLAB and Other OO Languages 5-62
Some Differences from C++ and Java Code 5-62
Object Modification . 5-63
Static Properties . 5-67
Common Object-Oriented Techniques 5-68

Defining and Organizing Classes
6

User-Defined Classes . 6-2
What Is a Class Definition . 6-2
Attributes for Class Members . 6-2

ix

Kinds of Classes . 6-3
Constructing Objects . 6-3
Class Hierarchies . 6-3
classdef Syntax . 6-3
Class Code . 6-4

Class Attributes . 6-6
Specifying Class Attributes . 6-6
Specifying Attributes . 6-8
Class-Specific Attributes . 6-9

Evaluation of Expressions in Class Definitions 6-10
Why Use Expressions . 6-10
Where to Use Expressions in Class Definitions 6-10
How MATLAB Evaluates Expressions 6-13
When MATLAB Evaluates Expressions 6-13
Expression Evaluation in Handle and Value Classes 6-14

Folders Containing Class Definitions . 6-17
Class Definitions on the Path . 6-17
Class and Path Folders . 6-17
Using Path Folders . 6-17
Using Class Folders . 6-18
Functions in Private Folders Within Class Folders 6-19
Class Precedence and MATLAB Path 6-19
Changing Path to Update Class Definition 6-21

Class Precedence . 6-23
Use of Class Precedence . 6-23
Why Mark Classes as Inferior . 6-23
InferiorClasses Attribute . 6-23

Packages Create Namespaces . 6-25
Package Folders . 6-25
Internal Packages . 6-26
Referencing Package Members Within Packages 6-26
Referencing Package Members from Outside the Package . . 6-27
Packages and the MATLAB Path . 6-28

Import Classes . 6-31
Syntax for Importing Classes . 6-31
Import Static Methods . 6-31
Import Package Functions . 6-32

x Contents

Package Function and Class Method Name Conflict 6-32
Clearing Import List . 6-32

Value or Handle Class — Which to Use
7

Comparison of Handle and Value Classes 7-2
Basic Difference . 7-2
Behavior of MATLAB Built-In Classes 7-3
User-Defined Value Classes . 7-4
User-Defined Handle Classes . 7-5
Determining Equality of Objects . 7-8
Functionality Supported by Handle Classes 7-10

Which Kind of Class to Use . 7-11
Examples of Value and Handle Classes 7-11
When to Use Value Classes . 7-11
When to Use Handle Classes . 7-12

The Handle Superclass . 7-13
Building on the Handle Class . 7-13
Handle Class Methods . 7-13
Event and Listener Methods . 7-14
Relational Methods . 7-14
Test Handle Validity . 7-14
When MATLAB Destroys Objects . 7-15

Handle Class Destructor . 7-16
Basic Knowledge . 7-16
Syntax of Handle Class Destructor Method 7-16
Handle Object During delete Method Execution 7-17
Support Destruction of Partially Constructed Objects 7-18
When to Define a Destructor Method 7-19
Destructors in Class Hierarchies . 7-20
Object Lifecycle . 7-21
Restrict Access to Object Delete Method 7-22
Nondestructor Delete Methods . 7-23
Java Objects Referencing MATLAB Objects 7-23

xi

Find Handle Objects and Properties . 7-26
Find Handle Objects . 7-26
Find Handle Object Properties . 7-26

Implement Set/Get Interface for Properties 7-28
The Standard Set/Get Interface . 7-28
Subclass Syntax . 7-28
Get Method Syntax . 7-29
Set Method Syntax . 7-29
Class Derived from matlab.mixin.SetGet 7-30

Implement Copy for Handle Classes . 7-35
Copy Method for Handle Classes . 7-35
Customize Copy Operation . 7-36
Copy Properties That Contain Handles 7-37
Exclude Properties from Copy . 7-40

Properties — Storing Class Data
8

Ways to Use Properties . 8-2
What Are Properties . 8-2
Types of Properties . 8-3

Property Syntax . 8-5
Property Definition Block . 8-5
Access Property Values . 8-6
Inheritance of Properties . 8-7
Specify Property Attributes . 8-7

Property Attributes . 8-9
Purpose of Property Attributes . 8-9
Specifying Property Attributes . 8-9
Table of Property Attributes . 8-9

Property Definition . 8-17
What You Can Define . 8-17
Initialize Property Values . 8-18
Property Default Values . 8-18
Initializing Properties to Handle Objects 8-19

xii Contents

Assign Property Values in Constructor 8-19
Property Attributes . 8-21
Property Access Methods . 8-21
Reference Object Properties Using Variables 8-22

Mutable and Immutable Properties . 8-24
Set Access to Property Values . 8-24
Define Immutable Property . 8-24

Validate Property Values . 8-26
Property Validation in Class Definitions 8-26
Sample Class Using Property Validation 8-28
Order of Validation . 8-29
Abstract Property Validation . 8-30
Objects Not Updated When Changing Validation 8-30
Validation During Load Operation . 8-31

Property Class and Size Validation . 8-33
Property Class and Size . 8-33
Property Size Validation . 8-33
Property Class Validation . 8-35
Default Values Per Size and Class . 8-39

Property Validation Functions . 8-42
Validate Property Using Functions . 8-42
MATLAB Validation Functions . 8-45
Define Validation Functions . 8-47
Add Support for Validation Functions 8-48

Metadata Interface to Property Validation 8-50

Property Access Methods . 8-52
Properties Provide Access to Class Data 8-52
Property Set and Get Methods . 8-53
Set and Get Method Execution and Property Events 8-55
Access Methods and Properties Containing Arrays 8-56
Access Methods and Arrays of Objects 8-56
Modify Property Values with Access Methods 8-56

Property Set Methods . 8-58
Overview of Property Access Methods 8-58
Property Set Method Syntax . 8-58
Validate Property Set Value . 8-59

xiii

When Set Method Is Called . 8-59

Property Get Methods . 8-62
Overview of Property Access Methods 8-62
Property Get Method Syntax . 8-62
Calculate Value for Dependent Property 8-62
Errors Not Returned from Get Method 8-63
Get Method Behavior . 8-63

Set and Get Methods for Dependent Properties 8-64
Calculate Dependent Property Value 8-65
When to Use Set Methods with Dependent Properties 8-65
Private Set Access with Dependent Properties 8-66

Properties Containing Objects . 8-68
Assigning Objects as Default Property Values 8-68
Assigning to Read-Only Properties Containing Objects 8-68
Assignment Behavior . 8-68

Dynamic Properties — Adding Properties to an Instance . . . 8-71
What Are Dynamic Properties . 8-71
Define Dynamic Properties . 8-72

Set and Get Methods for Dynamic Properties 8-75
Create Access Methods for Dynamic Properties 8-75
Shared Set and Get Methods . 8-76

Dynamic Property Events . 8-77
Dynamic Properties and Ordinary Property Events 8-77
Dynamic-Property Events . 8-77
Listen for a Specific Property Name 8-78
PropertyAdded Event Callback Execution 8-79
PropertyRemoved Event Callback Execution 8-80
How to Find meta.DynamicProperty Objects 8-80

Dynamic Properties and ConstructOnLoad 8-82

xiv Contents

Methods — Defining Class Operations
9

Methods in Class Design . 9-2
Class Methods . 9-2
Examples and Syntax . 9-2
Kinds of Methods . 9-3
Method Naming . 9-4

Method Attributes . 9-5
Purpose of Method Attributes . 9-5
Specifying Method Attributes . 9-5
Table of Method Attributes . 9-5

Ordinary Methods . 9-8
Ordinary Methods Operate on Objects 9-8
Methods Inside classdef Block . 9-8
Method Files . 9-9

Methods in Separate Files . 9-11
Class Folders . 9-11
Define Method in Function File . 9-12
Specify Method Attributes in classdef File 9-12
Methods You Must Define in the classdef File 9-13

Method Invocation . 9-15
Determining Which Method Is Invoked 9-15
Referencing Names with Expressions—Dynamic Reference . . 9-17
Index into Result of Method Call . 9-19
Controlling Access to Methods . 9-20
Invoking Superclass Methods in Subclass Methods 9-20
Invoking Built-In Functions . 9-21

Class Constructor Methods . 9-22
Purpose of Class Constructor Methods 9-22
Basic Structure of Constructor Methods 9-22
Guidelines for Constructors . 9-24
Default Constructor . 9-24
When to Define Constructors . 9-25
Related Information . 9-25
Initializing Objects in Constructor . 9-25
No Input Argument Constructor Requirement 9-26
Subclass Constructors . 9-27

xv

Implicit Call to Inherited Constructor 9-30
Errors During Class Construction . 9-30
Output Object Suppressed . 9-31

Static Methods . 9-33
What Are Static Methods . 9-33
Why Define Static Methods . 9-33
Defining Static Methods . 9-33
Calling Static Methods . 9-34
Inheriting Static Methods . 9-34

Overload Functions in Class Definitions 9-35
Why Overload Functions . 9-35
Implementing Overloaded MATLAB Functions 9-35
Rules for Naming to Avoid Conflicts 9-37

Class Support for Array-Creation Functions 9-39
Extend Array-Creation Functions for Your Class 9-39
Which Syntax to Use . 9-40
Implement Support for Array-Creation Functions 9-41

Object Precedence in Method Invocation 9-48
Object Precedence . 9-48
Defining Precedence . 9-49

Dominant Argument in Overloaded Graphics Functions 9-50
Graphics Object Precedence . 9-50
Dominant Argument . 9-50
Defining Class Precedence . 9-50
Calls to Inferior-Class Methods . 9-52

Class Methods for Graphics Callbacks 9-53
Referencing the Method . 9-53
Syntax for Method Callbacks . 9-53
Use a Class Method for a Slider Callback 9-54

xvi Contents

Object Arrays
10

Construct Object Arrays . 10-2
Build Arrays in the Constructor . 10-2
Referencing Property Values in Object Arrays 10-3

Initialize Object Arrays . 10-5
Calls to Constructor . 10-5
Initial Value of Object Properties . 10-6

Empty Arrays . 10-8
Creating Empty Arrays . 10-8
Assigning Values to an Empty Array 10-8

Initialize Arrays of Handle Objects . 10-11
Related Information . 10-13

Accessing Dynamic Properties in Arrays 10-14

Implicit Class Conversion . 10-16
Class Conversion Mechanism . 10-16
Concatenation . 10-16
Subscripted Assignment . 10-17

Concatenating Objects of Different Classes 10-18
Basic Knowledge . 10-18
MATLAB Concatenation Rules . 10-18
Concatenating Objects . 10-19
Calling the Dominant-Class Constructor 10-19
Converter Methods . 10-21

Designing Heterogeneous Class Hierarchies 10-24
Creating Classes That Support Heterogeneous Arrays 10-24
MATLAB Arrays . 10-24
Heterogeneous Hierarchies . 10-25
Heterogeneous Arrays . 10-25
Heterogeneous Array Concepts . 10-26
Nature of Heterogeneous Arrays . 10-26
Unsupported Hierarchies . 10-29
Default Object . 10-31
Conversion During Assignment and Concatenation 10-32

xvii

Empty Arrays of Heterogeneous Abstract Classes 10-32

Heterogeneous Array Constructors . 10-34
Building Arrays in Superclass Constructors 10-34
When Errors Can Occur . 10-34
Initialize Array in Superclass Constructor 10-35
Sample Implementation . 10-36
Potential Error . 10-38

Events — Sending and Responding to Messages
11

Overview Events and Listeners . 11-2
Why Use Events and Listeners . 11-2
Events and Listeners Basics . 11-2
Event Syntax . 11-3
Create Listener . 11-4

Define Custom Event Data . 11-6
Class Event Data Requirements . 11-6
Define and Trigger Event . 11-6
Define Event Data . 11-7
Create Listener for Overflow Event . 11-8

Observe Changes to Property Values . 11-9

Implement Property Set Listener . 11-11
PushButton Class Design . 11-11

Event and Listener Concepts . 11-14
The Event Model . 11-14
Limitations . 11-15
Default Event Data . 11-16
Events Only in Handle Classes . 11-16
Property-Set and Query Events . 11-17
Listeners . 11-17

Event Attributes . 11-19
Specify Event Attributes . 11-19

xviii Contents

Events and Listeners Syntax . 11-22
Components to Implement . 11-22
Name Events . 11-22
Trigger Events . 11-23
Listen to Events . 11-23
Define Event-Specific Data . 11-26

Listener Lifecycle . 11-28
Control Listener Lifecycle . 11-28
Temporarily Deactivate Listeners . 11-28
Permanently Delete Listeners . 11-28

Listener Callback Syntax . 11-30
Specifying Listener Callbacks . 11-30
Input Arguments for Callback Function 11-30
Additional Arguments for Callback Function 11-31

Callback Execution . 11-34
When Callbacks Execute . 11-34
Listener Order of Execution . 11-34
Callbacks That Call notify . 11-34
Manage Callback Errors . 11-35
Invoke Functions from Function Handles 11-35

Determine If Event Has Listeners . 11-37
Do Listeners Exist for This Event? 11-37
Why Test for Listeners . 11-37
Coding Patterns . 11-37
Listeners in Heterogeneous Arrays 11-38

Listen for Changes to Property Values 11-40
Create Property Listeners . 11-40
Property Event and Listener Classes 11-42

Assignment When Property Value Is Unchanged 11-44
AbortSet When Value Does Not Change 11-44
How MATLAB Compares Values . 11-44
When to Use AbortSet . 11-45
Implement AbortSet . 11-45
Using AbortSet with Property Validation 11-47

Techniques for Using Events and Listeners 11-50
Example Overview . 11-50

xix

Techniques Demonstrated in This Example 11-51
Summary of fcneval Class . 11-51
Summary of fcnview Class . 11-52
Methods Inherited from Handle Class 11-54
Using the fcneval and fcnview Classes 11-54
Implement UpdateGraph Event and Listener 11-56
The PostSet Event Listener . 11-60
Enable and Disable Listeners . 11-63
@fcneval/fcneval.m Class Code . 11-64
@fcnview/fcnview.m Class Code . 11-65

How to Build on Other Classes
12

Hierarchies of Classes — Concepts . 12-2
Classification . 12-2
Develop the Abstraction . 12-3
Design of Class Hierarchies . 12-4
Super and Subclass Behavior . 12-4
Implementation and Interface Inheritance 12-5

Subclass Syntax . 12-7
Subclass Definition Syntax . 12-7
Subclass double . 12-7

Design Subclass Constructors . 12-9
Call Superclass Constructor Explicitly 12-9
Call Superclass Constructor from Subclass 12-9
Subclass Constructor Implementation 12-11
Call Only Direct Superclass from Constructor 12-12

Control Sequence of Constructor Calls 12-14

Modify Inherited Methods . 12-16
When to Modify Superclass Methods 12-16
Extend Superclass Methods . 12-16
Redefine Superclass Methods in Subclass 12-17
Override Superclass Methods . 12-18

xx Contents

Modify Inherited Properties . 12-20
Superclass Property Modification . 12-20
Private Local Property Takes Precedence in Method 12-20

Subclassing Multiple Classes . 12-22
Specify Multiple Superclasses . 12-22
Class Member Compatibility . 12-22
Multiple Inheritance . 12-23

Specify Allowed Subclasses . 12-25
Basic Knowledge . 12-25
Why Control Allowed Subclasses . 12-25
Specify Allowed Subclasses . 12-25
Define Sealed Hierarchy of Classes 12-27

Class Members Access . 12-28
Basic Knowledge . 12-28
Applications for Access Control Lists 12-29
Specify Access to Class Members . 12-29
Properties with Access Lists . 12-31
Methods with Access Lists . 12-31
Abstract Methods with Access Lists 12-35

Property Access List . 12-36

Method Access List . 12-37

Event Access List . 12-38

Handle Compatible Classes . 12-39
Basic Knowledge . 12-39
When to Use Handle Compatible Classes 12-39
Handle Compatibility Rules . 12-40
Identify Handle Objects . 12-40

How to Define Handle-Compatible Classes 12-41
What Is Handle Compatibility? . 12-41
Subclassing Handle-Compatible Classes 12-43

Methods for Handle Compatible Classes 12-46
Methods for Handle and Value Objects 12-46
Modify Value Objects in Methods . 12-46

xxi

Handle-Compatible Classes and Heterogeneous Arrays . . . 12-48
Heterogeneous Arrays . 12-48
Methods Must Be Sealed . 12-48
Template Technique . 12-48

Subclasses of MATLAB Built-In Types 12-50
MATLAB Built-In Types . 12-50
Built-In Types You Can Subclass . 12-50
Why Subclass Built-In Types . 12-51
Which Functions Work with Subclasses of Built-In Types . . 12-51
Behavior of Built-In Functions with Subclass Objects 12-51
Built-In Subclasses That Define Properties 12-52

Behavior of Inherited Built-In Methods 12-54
Subclass double . 12-54
Built-In Data Value Methods . 12-55
Built-In Data Organization Methods 12-56
Built-In Indexing Methods . 12-57
Built-In Concatenation Methods . 12-57

Subclasses of Built-In Types Without Properties 12-60
Specialized Numeric Types . 12-60
A Class to Manage uint8 Data . 12-60
Using the DocUint8 Class . 12-61

Subclasses of Built-In Types with Properties 12-68
Specialized Numeric Types with Additional Data Storage . . 12-68
Subclasses with Properties . 12-68
Property Added . 12-69
Methods Implemented . 12-69
Class Definition Code . 12-69
Using ExtendDouble . 12-72
Concatenation of ExtendDouble Objects 12-75

Use of size and numel with Classes . 12-77
size and numel . 12-77
Built-In Class Behavior . 12-77
Subclasses Inherit Behavior . 12-78
Classes Not Derived from Built-In Classes 12-79
Change the Behavior of size or numel 12-81
Overload numArgumentsFromSubscript Instead of numel . . 12-82

xxii Contents

Representing Hardware with Classes 12-83
Objective . 12-83
Why Derive from int32 . 12-83
Implementation . 12-83
Construct MuxCard Object . 12-84
Call Methods of int32 . 12-85

Determine Array Class . 12-87
Query the Class Name . 12-87
Test for Array Class . 12-87
Test for Specific Types . 12-88
Test for Most Derived Class . 12-89

Abstract Classes . 12-91
Abstract Classes . 12-91
Declare Classes as Abstract . 12-92
Determine If a Class Is Abstract . 12-93
Find Inherited Abstract Properties and Methods 12-94

Define an Interface Superclass . 12-96
Interfaces . 12-96
Interface Class Implementing Graphs 12-96

Saving and Loading Objects
13

Save and Load Process for Objects . 13-2
Save and Load Objects . 13-2
What Information Is Saved? . 13-2
How Is the Property Data Loaded? . 13-3
Errors During Load . 13-3

Reduce MAT-File Size for Saved Objects 13-5
Default Values . 13-5
Dependent Properties . 13-5
Transient Properties . 13-5
Avoid Saving Unwanted Variables . 13-6

Save Object Data to Recreate Graphics Objects 13-7
What to Save . 13-7

xxiii

Regenerate When Loading . 13-7
Change to a Stairstep Chart . 13-8

Improve Version Compatibility with Default Values 13-10
Version Compatibility . 13-10
Using a Default Property Value . 13-10

Avoid Property Initialization Order Dependency 13-12
Control Property Loading . 13-12
Dependent Property with Private Storage 13-13
Property Value Computed from Other Properties 13-14

Modify the Save and Load Process . 13-16
When to Modify the Save and Load Process 13-16
How to Modify the Save and Load Process 13-16
Implementing saveobj and loadobj Methods 13-17
Additional Considerations . 13-17

Basic saveobj and loadobj Pattern . 13-19
Using saveobj and loadobj . 13-19
Handle Load Problems . 13-20

Maintain Class Compatibility . 13-23
Rename Property . 13-23
Update Property When Loading . 13-25
Maintaining Compatible Versions of a Class 13-26
Version 2 of the PhoneBookEntry Class 13-27

Initialize Objects When Loading . 13-30
Calling Constructor When Loading Objects 13-30
Initializing Objects in the loadobj Method 13-30

Save and Load Objects from Class Hierarchies 13-33
Saving and Loading Subclass Objects 13-33
Reconstruct the Subclass Object from a Saved struct 13-33

Restore Listeners . 13-36
Create Listener with loadobj . 13-36
Use Transient Property to Load Listener 13-36
Using the BankAccount and AccountManager Classes 13-38

xxiv Contents

Enumerations
14

Named Values . 14-2
Kinds of Predefined Names . 14-2
Techniques for Defining Enumerations 14-3

Define Enumeration Classes . 14-5
Enumeration Class . 14-5
Construct an Enumeration Member 14-5
Convert to Superclass Value . 14-6
Define Methods in Enumeration Classes 14-7
Define Properties in Enumeration Classes 14-7
Enumeration Class Constructor Calling Sequence 14-8

Refer to Enumerations . 14-11
Instances of Enumeration Classes . 14-11
Conversion of Characters to Enumerations 14-13
Enumeration Arrays . 14-15

Enumerations for Property Values . 14-17
Syntax for Property/Enumeration Definition 14-17
Example of Restricted Property . 14-17

Operations on Enumerations . 14-19
Operations Supported by Enumerations 14-19
Enumeration Class . 14-19
Default Methods . 14-20
Convert Enumeration Member to Characters 14-20
Convert Enumeration Array to Cell Array of char Vectors . . 14-20
Enumerations and char Vectors in Relational Operations . . 14-21
Enumerations in switch Statements 14-22
Enumeration Set Membership . 14-23
Enumeration Text Comparison Methods 14-24
How to Get Information About Enumerations 14-25
Testing for an Enumeration . 14-25

Enumeration Class Restrictions . 14-27

Enumerations Derived from Built-In Types 14-28
Subclassing Built-In Types . 14-28
Derive Enumeration Class from Numeric Type 14-28

xxv

How to Alias Enumeration Names . 14-30
Superclass Constructor Returns Underlying Value 14-31
Default Converter . 14-32

Mutable Handle vs. Immutable Value Enumeration Members
. 14-34

Select Handle- or Value-Based Enumerations 14-34
Value-Based Enumeration Classes . 14-34
Handle-Based Enumeration Classes 14-36
Represent State with Enumerations 14-39

Enumerations That Encapsulate Data 14-41
Enumeration Classes with Properties 14-41
Store Data in Properties . 14-41

Save and Load Enumerations . 14-45
Basic Knowledge . 14-45
Built-In and Value-Based Enumeration Classes 14-45
Simple and Handle-Based Enumeration Classes 14-45
Causes: Load as struct Instead of Object 14-46

Constant Properties
15

Define Class Properties with Constant Values 15-2
Defining Named Constants . 15-2
Constant Property Assigned a Handle Object 15-4
Constant Property Assigned Any Object 15-4
Constant Properties — No Support for Get Events 15-6

Class Aliasing
16

Aliases for Class Names . 16-2
When to Use Aliases . 16-2
Defining Aliases . 16-2
Alias Definition Folders and Files . 16-3

xxvi Contents

Aliases and the MATLAB Path . 16-4
Sequential Renaming . 16-4
Updating Aliases in a MATLAB Session 16-5
Aliasing Examples . 16-5

Information from Class Metadata
17

Class Metadata . 17-2
What Is Class Metadata? . 17-2
The meta Package . 17-3
Metaclass Objects . 17-3
Metaclass Object Lifecycle . 17-4

Class Introspection with Metadata . 17-5
Using Class Metadata . 17-5
Inspect the EmployeeData Class . 17-5
Metaclass EnumeratedValues Property 17-8

Find Objects with Specific Values . 17-10
Find Handle Objects . 17-10
Find by Attribute Settings . 17-11

Get Information About Properties . 17-14
The meta.property Object . 17-14
How to Find Properties with Specific Attributes 17-17

Find Default Values in Property Metadata 17-20
Default Values . 17-20
meta.property Data . 17-20

Specialize Object Behavior
18

Methods That Modify Default Behavior 18-2
How to Customize Class Behavior . 18-2
Which Methods Control Which Behaviors 18-2

xxvii

Overload Functions and Override Methods 18-4

Number of Arguments for subsref and subsasgn 18-6
How MATLAB Determines Number of Arguments 18-6
Syntax for subsref, and subsasgn Methods 18-8

Modify nargout and nargin for Indexing Methods 18-9
When to Modify Number of Arguments 18-9
How to Modify Number of Arguments 18-9

Concatenation Methods . 18-11
Default Concatenation . 18-11
Methods to Overload . 18-11

Object Converters . 18-12
Why Implement Converters . 18-12
Converters for Package Classes . 18-12
Converters and Subscripted Assignment 18-13

Object Array Indexing . 18-15
Default Indexed Reference and Assignment 18-15
What You Can Modify . 18-16
When to Modify Indexing Behavior 18-17
Built-In subsref and subsasgn Called in Methods 18-17
Avoid Overriding Access Attributes 18-19

Code Patterns for subsref and subsasgn Methods 18-21
Customize Indexed Reference and Assignment 18-21
Syntax for subsref and subsasgn Methods 18-21
Indexing Structure Describes Indexing Expressions 18-22
Values of the Indexing Structure . 18-23
Typical Patterns for Indexing Methods 18-23

Indexed Reference . 18-28
How Indexed Reference Works . 18-28
Compound Indexed References . 18-29

Indexed Assignment . 18-31
How Indexed Assignment Works . 18-31
Indexed Assignment to Objects . 18-33
Compound Indexed Assignments . 18-33

xxviii Contents

end as Object Index . 18-35
Define end Indexing for an Object . 18-35
The end Method . 18-36

Objects in Index Expressions . 18-37
Objects Indexes . 18-37
Ways to Implement Objects as Indices 18-37
subsindex Implementation . 18-37

Class with Modified Indexing . 18-39
How to Modify Class Indexing . 18-39
Class Description . 18-39
Specialize Subscripted Reference — subsref 18-40
Specialize Subscripted Assignment — subsasgn 18-42
Implement Addition for Object Data — double and plus . . . 18-43
MyDataClass.m . 18-44

Operator Overloading . 18-47
Why Overload Operators . 18-47
How to Define Operators . 18-47
Sample Implementation — Addable Objects 18-48
MATLAB Operators and Associated Functions 18-50

Customizing Object Display
19

Custom Display Interface . 19-2
Command Window Display . 19-2
Default Object Display . 19-2
CustomDisplay Class . 19-3
Methods for Customizing Object Display 19-4

How CustomDisplay Works . 19-8
Steps to Display an Object . 19-8
Methods Called for a Given Object State 19-9

Role of size Function in Custom Displays 19-11
How size Is Used . 19-11
Precautions When Overloading size 19-11

xxix

Customize Display for Heterogeneous Arrays 19-13

Class with Default Object Display . 19-15
The EmployeeInfo Class . 19-15
Default Display — Scalar . 19-16
Default Display — Nonscalar . 19-16
Default Display — Empty Object Array 19-17
Default Display — Handle to Deleted Object 19-18
Default Display — Detailed Display 19-18

Choose a Technique for Display Customization 19-20
Ways to Implement a Custom Display 19-20
Sample Approaches Using the Interface 19-21

Customize Property Display . 19-24
Objective . 19-24
Change the Property Order . 19-24
Change the Values Displayed for Properties 19-25

Customize Header, Property List, and Footer 19-27
Objective . 19-27
Design of Custom Display . 19-27
getHeader Method Override . 19-29
getPropertyGroups Override . 19-30
getFooter Override . 19-30

Customize Display of Scalar Objects 19-33
Objective . 19-33
Design Of Custom Display . 19-33
displayScalarObject Method Override 19-34
getPropertyGroups Override . 19-35

Customize Display of Object Arrays . 19-38
Objective . 19-38
Design of Custom Display . 19-38
The displayNonScalarObject Override 19-39
The displayEmptyObject Override . 19-40

Overloading the disp Function . 19-43
Display Methods . 19-43
Overloaded disp . 19-43
Relationship Between disp and display 19-43

xxx Contents

Defining Custom Data Types
20

Representing Polynomials with Classes 20-2
Object Requirements . 20-2
DocPolynom Class Members . 20-2
DocPolynom Class Synopsis . 20-4
The DocPolynom Constructor . 20-13
Remove Irrelevant Coefficients . 20-14
Convert DocPolynom Objects to Other Types 20-15
Overload disp for DocPolynom . 20-17
Display Evaluated Expression . 20-18
Redefine Indexed Reference . 20-19
Define Arithmetic Operators . 20-21

Designing Related Classes
21

A Class Hierarchy for Heterogeneous Arrays 21-2
Interfaces Based on Heterogeneous Arrays 21-2
Define Heterogeneous Hierarchy . 21-2
Assets Class . 21-5
Stocks Class . 21-7
Bonds Class . 21-9
Cash Class . 21-10
Default Object . 21-12
Operating on an Assets Array . 21-14

xxxi

Using Object-Oriented Design in
MATLAB

• “Why Use Object-Oriented Design” on page 1-2
• “Handle Object Behavior” on page 1-9

1

Why Use Object-Oriented Design

In this section...
“Approaches to Writing MATLAB Programs” on page 1-2
“When Should You Create Object-Oriented Programs” on page 1-3

Approaches to Writing MATLAB Programs
Creating software applications typically involves designing the application data and
implementing operations performed on that data. Procedural programs pass data to
functions, which perform the necessary operations on the data. Object-oriented software
encapsulates data and operations in objects that interact with each other via the object's
interface.

The MATLAB language enables you to create programs using both procedural and object-
oriented techniques and to use objects and ordinary functions together in your programs.

Procedural Program Design

In procedural programming, your design focuses on the steps that must execute to
achieve a desired state. Typically, you represent data as individual variables or fields of a
structure. You implement operations as functions that take the variables as arguments.
Programs usually call a sequence of functions, each one of which is passed data, and then
returns modified data. Each function performs an operation or many operations on the
data.

Object-Oriented Program Design

The object-oriented program design involves:

• Identifying the components of the system or application that you want to build
• Analyzing and identifying patterns to determine what components are used repeatedly

or share characteristics
• Classifying components based on similarities and differences

After performing this analysis, you define classes that describe the objects your
application uses.

1 Using Object-Oriented Design in MATLAB

1-2

Classes and Objects

A class describes a set of objects with common characteristics. Objects are specific
instances of a class. The values contained in an object's properties are what make an
object different from other objects of the same class. The functions defined by the class
(called methods) are what implement object behaviors that are common to all objects of a
class.

When Should You Create Object-Oriented Programs
You can implement simple programming tasks as simple functions. However, as the
magnitude and complexity of your tasks increase, functions become more complex and
difficult to manage.

As functions become too large, you can break them into smaller functions and pass data
from one to function to another. However, as the number of functions becomes large,
designing, and managing the data passed to functions becomes difficult and error prone.
At this point, consider moving your MATLAB programming tasks to object-oriented
designs.

Understand a Problem in Terms of Its Objects

Thinking in terms of objects is simpler and more natural for some problems. Think of the
nouns in your problem statement as the objects to define and the verbs as the operations
to perform.

Consider the design of classes to represent money lending institutions (banks, mortgage
companies, individual money lenders, and so on). It is difficult to represent the various
types of lenders as procedures. However, you can represent each one as an object that
performs certain actions and contains certain data. The process of designing the objects
involves identifying the characteristics of a lender that are important to your application.

Identify Commonalities

What do all money lenders have in common? All MoneyLender objects can have a loan
method and an InterestRate property, for example.

Identify Differences

How does each money lender differ? One can provide loans to businesses while another
provides loans only to individuals. Therefore, the loan operation might need to be
different for different types of lending institutions. Subclasses of a base MoneyLender

 Why Use Object-Oriented Design

1-3

class can specialize the subclass versions of the loan method. Each lender can have a
different value for its InterestRate property.

Factor out commonalities into a superclass and implement what is specific to each type of
lender in the subclass.
Add Only What Is Necessary

These institutions might engage in activities that are not of interest to your application.
During the design phase, determine what operations and data an object must contain
based on your problem definition.

Objects Manage Internal State

Objects provide several useful features not available from structures and cell arrays. For
example, objects can:

• Constrain the data values assigned to any given property
• Calculate the value of a property only when it is queried
• Broadcast notices when any property value is queried or changed
• Restrict access to properties and methods

Reducing Redundancy

As the complexity of your program increases, the benefits of an object-oriented design
become more apparent. For example, suppose that you implement the following
procedure as part of your application:

1 Check inputs
2 Perform computation on the first input argument
3 Transform the result of step 2 based on the second input argument
4 Check validity of outputs and return values

You can implement this procedure as an ordinary function. But suppose that you use this
procedure again somewhere in your application, except that step 2 must perform a
different computation. You could copy and paste the first implementation, and then
rewrite step 2. Or you could create a function that accepted an option indicating which
computation to make, and so on. However, these options lead to more complicated code.

An object-oriented design can factor out the common code into what is called a base
class. The base class would define the algorithm used and implement whatever is common

1 Using Object-Oriented Design in MATLAB

1-4

to all cases that use this code. Step 2 could be defined syntactically, but not implemented,
leaving the specialized implementation to the classes that you then derive from this base
class.

Step 1
function checkInputs()
 % actual implementation
end

Step 2
function results = computeOnFirstArg()
 % specify syntax only
end

Step 3
function transformResults()
 % actual implementation
end

Step 4
function out = checkOutputs()
 % actual implementation
end

The code in the base class is not copied or modified. Classes you derive from the base
class inherit this code. Inheritance reduces the amount of code to be tested, and isolates
your program from changes to the basic procedure.

Defining Consistent Interfaces

The use of a class as the basis for similar, but more specialized classes is a useful
technique in object-oriented programming. This class defines a common interface.
Incorporating this kind of class into your program design enables you to:

• Identify the requirements of a particular objective
• Encode requirements into your program as an interface class

Reducing Complexity

Objects reduce complexity by reducing what you must know to use a component or
system:

• Objects provide an interface that hides implementation details.

 Why Use Object-Oriented Design

1-5

• Objects enforce rules that control how objects interact.

To illustrate these advantages, consider the implementation of a data structure called a
doubly linked list. See “Implementing Linked Lists with Classes” on page 3-31 for the
actual implementation.

Here is a diagram of a three-element list:

n3

Properties

Next

Prev

n2

Properties

Next

Prev

n1

Properties

Next

Prev

n2.Nextn2n2.Prev

To add a node to the list, disconnect the existing nodes in the list, insert the new node,
and reconnect the nodes appropriately. Here are the basic steps:

First disconnect the nodes:

1 Unlink n2.Prev from n1
2 Unlink n1.Next from n2

Now create the new node, connect it, and renumber the original nodes:

1 Link new.Prev to n1
2 Link new.Next to n3 (was n2)
3 Link n1.Next to new (will be n2)
4 Link n3.Prev to new (will be n2)

n4

Properties

Next

Prev

n3

Properties

Next

Prev

n2

Properties

Next

Prev

n1

Properties

Next

Prev

Newly inserted node

1 Using Object-Oriented Design in MATLAB

1-6

The details of how methods perform these steps are encapsulated in the class design.
Each node object contains the functionality to insert itself into or remove itself from the
list.

For example, in this class, every node object has an insertAfter method. To add a node
to a list, create the node object and then call its insertAfter method:

nnew = NodeConstructor;
nnew.insertAfter(n1)

Because the node class defines the code that implements these operations, this code is:

• Implemented in an optimal way by the class author
• Always up to date with the current version of the class
• Properly tested
• Can automatically update old-versions of the objects when they are loaded from MAT-
files.

The object methods enforce the rules for how the nodes interact. This design removes the
responsibility for enforcing rules from the applications that use the objects. It also means
that the application is less likely to generate errors in its own implementation of the
process.

Fostering Modularity

As you decompose a system into objects (car –> engine –> fuel system –> oxygen sensor),
you form modules around natural boundaries. Classes provide three levels of control over
code modularity:

• Public — Any code can access this particular property or call this method.
• Protected — Only this object's methods and methods of the object's derived from this

object's class can access this property or call this method.
• Private — Only the object's own methods can access this property or call this method.

Overloaded Functions and Operators

When you define a class, you can overload existing MATLAB functions to work with your
new object. For example, the MATLAB serial port class overloads the fread function to
read data from the device connected to the port represented by this object. You can define
various operations, such as equality (eq) or addition (plus), for a class you have defined
to represent your data.

 Why Use Object-Oriented Design

1-7

See Also

More About
• “Role of Classes in MATLAB” on page 3-2

1 Using Object-Oriented Design in MATLAB

1-8

Handle Object Behavior
In this section...
“What Is a Handle?” on page 1-9
“Copies of Handles” on page 1-9
“Handle Objects Modified in Functions” on page 1-10
“Determine If an Object Is a Handle” on page 1-12
“Deleted Handle Objects” on page 1-12

More than one variable can refer to the same handle object. Therefore, users interact
with instances of handle classes differently than instances of value classes.
Understanding how handle objects behave can help you determine whether to implement
a handle or a value class. This topic illustrates some of those interactions.

For more information on handle classes, see “Handle Classes”.

What Is a Handle?
Certain kinds of MATLAB objects are handles. When a variable holds a handle, it actually
holds a reference to the object.

Handle objects enable more than one variable to refer to the same object. Handle-object
behavior affects what happens when you copy handle objects and when you pass them to
functions.

Copies of Handles
All copies of a handle object variable refer to the same underlying object. This reference
behavior means that if h identifies a handle object, then,

h2 = h;

Creates another variable, h2, that refers to the same object as h.

For example, the MATLAB audioplayer function creates a handle object that contains
the audio source data to reproduce a specific sound segment. The variable returned by
the audioplayer function identifies the audio data and enables you to access object
functions to play the audio.

 Handle Object Behavior

1-9

MATLAB software includes audio data that you can load and use to create an
audioplayer object. This sample load audio data, creates the audio player, and plays the
audio:

load gong Fs y
gongSound = audioplayer(y,Fs);
play(gongSound)

Suppose that you copy the gongSound object handle to another variable (gongSound2):

gongSound2 = gongSound;

The variables gongSound and gongSound2 are copies of the same handle and, therefore,
refer to the same audio source. Access the audioplayer information using either
variable.

For example, set the sample rate for the gong audio source by assigning a new value to
the SampleRate property. First get the current sample rate and then set a new sample
rate:

sr = gongSound.SampleRate;
disp(sr)

8192

gongSound.SampleRate = sr*2;

You can use gongSound2 to access the same audio source:

disp(gongSound2.SampleRate)

16384

Play the gong sound with the new sample rate:

play(gongSound2)

Handle Objects Modified in Functions
When you pass an argument to a function, the function copies the variable from the
workspace in which you call the function into the parameter variable in the function’s
workspace.

1 Using Object-Oriented Design in MATLAB

1-10

Passing a nonhandle variable to a function does not affect the original variable that is in
the caller’s workspace. For example, myFunc modifies a local variable called var, but
when the function ends, the local variable var no longer exists:

function myFunc(var)
 var = var + 1;
end

Define a variable and pass it to myfunc:

x = 12;
myFunc(x)

The value of x has not changed after executing myFunc(x):

disp(x)

12

The myFunc function can return the modified value, which you could assign to the same
variable name (x) or another variable.

function out = myFunc(var)
 out = var + 1;
end

Modify a value in myfunc:

x = 12;
x = myFunc(x);
disp(x)

13

When the argument is a handle variable, the function copies only the handle, not the
object identified by that handle. Both handles (original and local copy) refer to the same
object.

When the function modifies the data referred to by the object handle, those changes are
accessible from the handle variable in the calling workspace without the need to return
the modified object.

For example, the modifySampleRate function changes the audioplayer sample rate:

 Handle Object Behavior

1-11

function modifySampleRate(audioObj,sr)
 audioObj.SampleRate = sr;
end

Create an audioplayer object and pass it to the modifySampleRate function:

load gong Fs y
gongSound = audioplayer(y,Fs);
disp(gongSound.SampleRate)

8192

modifySampleRate(gongSound,16384)
disp(gongSound.SampleRate)

16384

The modifySampleRate function does not need to return a modified gongSound object
because audioplayer objects are handle objects.

Determine If an Object Is a Handle
Handle objects are members of the handle class. Therefore, you can always identify an
object as a handle using the isa function. isa returns logical true (1) when testing for a
handle variable:

load gong Fs y
gongSound = audioplayer(y,Fs);
isa(gongSound,'handle')

To determine if a variable is a valid handle object, use isa and isvalid:

if isa(gongSound,'handle') && isvalid(gongSound)
 ...
end

Deleted Handle Objects
When a handle object has been deleted, the handle variables that referenced the object
can still exist. These variables become invalid because the object they referred to no
longer exists. Calling delete on the object removes the object, but does not clear handle
variables.

For example, create an audioplayer object:

1 Using Object-Oriented Design in MATLAB

1-12

load gong Fs y
gongSound = audioplayer(y,Fs);

The output argument, gongSound, is a handle variable. Calling delete deletes the object
along with the audio source information it contains:

delete(gongSound)

However, the handle variable still exists:

disp(gongSound)

handle to deleted audioplayer

The whos command shows gongSound as an audioplayer object:

whos

 Name Size Bytes Class Attributes

 Fs 1x1 8 double
 gongSound 1x1 0 audioplayer
 y 42028x1 336224 double

Note The value for Bytes returned by the whos command does not include the data
referenced by a handle because many variables can reference the same data.

The handle gongSound no longer refers to a valid object, as shown by the isvalid
handle method:

isvalid(gongSound)

ans =

 logical

 0

Calling delete on a deleted handle does nothing and does not cause an error. You can
pass an array containing both valid and invalid handles to delete. MATLAB deletes the
valid handles, but does not issue an error when encountering handles that are already
invalid.

You cannot access properties with the invalid handle variable:

 Handle Object Behavior

1-13

gongSound.SampleRate

Invalid or deleted object.

Functions and methods that access object properties cause an error:

play(gongSound)

Invalid or deleted object.

To remove the variable, gongSound, use clear:

clear gongSound
whos

 Name Size Bytes Class Attributes

 Fs 1x1 8 double
 y 42028x1 336224 double

See Also

More About
• “Handle Class Destructor” on page 7-16
• “Comparison of Handle and Value Classes” on page 7-2

1 Using Object-Oriented Design in MATLAB

1-14

Basic Example

2

Create a Simple Class
In this section...
“Design Class” on page 2-2
“Create Object” on page 2-3
“Access Properties” on page 2-3
“Call Methods” on page 2-4
“Add Constructor” on page 2-4
“Vectorize Methods” on page 2-5
“Overload Functions” on page 2-6
“BasicClass Code Listing” on page 2-7

Design Class
The basic purpose of a class is to define an object that encapsulates data and the
operations performed on that data. For example, BasicClass defines a property and two
methods that operate on the data in that property:

• Value — Property that contains the numeric data stored in an object of the class
• roundOff — Method that rounds the value of the property to two decimal places
• multiplyBy — Method that multiplies the value of the property by the specified

number

Here is the definition of BasicClass:

classdef BasicClass
 properties
 Value {mustBeNumeric}
 end
 methods
 function r = roundOff(obj)
 r = round([obj.Value],2);
 end
 function r = multiplyBy(obj,n)
 r = [obj.Value] * n;
 end
 end
end

2 Basic Example

2-2

For a summary of class syntax, see classdef.

To use the class:

• Save the class definition in a .m file with the same name as the class.
• Create an object of the class.
• Access the properties to assign data.
• Call methods to perform operation on the data.

Create Object
Create an object of the class using the class name:

a = BasicClass

a =

 BasicClass with properties:

 Value: []

Initially, the property value is empty.

Access Properties
Assign a value to the Value property using the object variable and a dot before the
property name:

a.Value = pi/3;

To return a property value, use dot notation without the assignment:

a.Value

ans =

 1.0472

For information on class properties, see “Class Properties” on page 5-12.

 Create a Simple Class

2-3

Call Methods
Call the roundOff method on object a:

roundOff(a)

ans =

 1.0500

Pass the object as the first argument to a method that takes multiple arguments, as in this
call to the myltiplyBy method:

multiplyBy(a,3)

ans =

 3.1416

You can also call a method using dot notation:

a.multiplyBy(3)

It is not necessary to pass the object explicitly as an argument when using dot notation.
The notation uses the object to the left of the dot and method name.

For information on class methods, see “Methods and Functions” on page 5-15

Add Constructor
Classes can define a special method to create objects of the class, called a constructor.
Constructor methods enable you to pass arguments to the constructor, which you can
assign as property values. The BasicClass Value property restricts its possible values
using the mustBeNumeric function.

Here is a constructor for the BasicClass class. When you call the constructor with an
input argument, it is assigned to the Value property. If you call the constructor without
an input argument, the Value property has a default value of empty ([]).

methods
 function obj = BasicClass(val)
 if nargin == 1
 obj.Value = val;

2 Basic Example

2-4

 end
 end
end

By adding this constructor to the class definition, you can create an object and set the
property value in one step:

a = BasicClass(pi/3)

a =

 BasicClass with properties:

 Value: 1.0472

The constructor can perform other operations related to creating objects of the class.

For information on constructors, see “Class Constructor Methods” on page 9-22

Vectorize Methods
MATLAB enables you to vectorize operations. For example, you can add a number to a
vector:

[1 2 3] + 2

ans =

 3 4 5

MATLAB adds the number 2 to each of the elements in the array [1 2 3]. To vectorize
the arithmetic operator methods, enclose the obj.Value property reference in brackets.

[obj.Value] + 2

This syntax enables the method to work with arrays of object. For example, create an
object array using indexed assignment.

obj(1) = BasicClass(2.7984);
obj(2) = BasicClass(sin(pi/3));
obj(3) = BasicClass(7);

Then this expression:

[obj.Value] + 2

 Create a Simple Class

2-5

Is equivalent to this expression:

[obj(1).Value obj(2).Value obj(3).Value] + 2

Because the roundOff method is vectorized, it can operate on arrays:

roundOff(obj)

ans =

 2.8000 0.8700 7.0000

Overload Functions
Classes can implement existing functionality, such as addition, by defining a method with
the same name as the existing MATLAB function. For example, suppose that you want to
add two BasicClass objects. It makes sense to add the values of the Value properties of
each object.

Here is an overloaded version of the MATLAB plus function. It defines addition for the
BasicClass class as adding the property values:

method
 function r = plus(o1,o2)
 r = [o1.Value] + [o2.Value];
 end
end

By implementing a method called plus, you can use the “+” operator with objects of
BasicClass.

a = BasicClass(pi/3);
b = BasicClass(pi/4);
a + b

ans =

 1.8326

By vectorizing the plus method, you can operate on object arrays.

a = BasicClass(pi/3);
b = BasicClass(pi/4);
c = BasicClass(pi/2);

2 Basic Example

2-6

ar = [a b];
ar + c

ans =

 2.6180 2.3562

Related Information

For information on overloading functions, see “Overload Functions in Class Definitions”
on page 9-35.

For information on overloading operators, see “Operator Overloading” on page 18-47.

BasicClass Code Listing
Here is the BasicClass definition after adding the features discussed in this topic:

classdef BasicClass
 properties
 Value {mustBeNumeric}
 end
 methods
 function obj = BasicClass(val)
 if nargin == 1
 obj.Value = val;
 end
 end
 function r = roundOff(obj)
 r = round([obj.Value],2);
 end
 function r = multiplyBy(obj,n)
 r = [obj.Value] * n;
 end
 function r = plus(o1,o2)
 r = [o1.Value] + [o2.Value];
 end
 end
end

 Create a Simple Class

2-7

See Also

Related Examples
• “Class Syntax Guide”
• “Validate Property Values” on page 8-26

2 Basic Example

2-8

MATLAB Classes Overview

• “Role of Classes in MATLAB” on page 3-2
• “Developing Classes — Typical Workflow” on page 3-8
• “Representing Structured Data with Classes” on page 3-19
• “Implementing Linked Lists with Classes” on page 3-31

3

Role of Classes in MATLAB
In this section...
“Classes” on page 3-2
“Some Basic Relationships” on page 3-4

Classes
In the MATLAB language, every value is assigned to a class. For example, creating a
variable with an assignment statement constructs a variable of the appropriate class:

a = 7;
b = 'some text';
s.Name = 'Nancy';
s.Age = 64;
whos

whos
 Name Size Bytes Class Attributes

 a 1x1 8 double
 b 1x9 18 char
 s 1x1 370 struct

Basic commands like whos display the class of each value in the workspace. This
information helps MATLAB users recognize that some values are characters and display
as text while other values are double precision numbers, and so on. Some variables can
contain different classes of values like structures.

Predefined Classes

MATLAB defines fundamental classes that comprise the basic types used by the language.
These classes include numeric, logical, char, cell, struct, and function handle.

User-Defined Classes

You can create your own MATLAB classes. For example, you could define a class to
represent polynomials. This class could define the operations typically associated with
MATLAB classes, like addition, subtraction, indexing, displaying in the command window,
and so on. These operations would need to perform the equivalent of polynomial addition,
polynomial subtraction, and so on. For example, when you add two polynomial objects:

3 MATLAB Classes Overview

3-2

p1 + p2

the plus operation must be able to add polynomial objects because the polynomial class
defines this operation.

When you define a class, you can overload special MATLAB functions (such as plus.m for
the addition operator). MATLAB calls these methods when users apply those operations to
objects of your class.

See “Representing Polynomials with Classes” on page 20-2 for an example that creates
just such a class.

MATLAB Classes — Key Terms

MATLAB classes use the following words to describe different parts of a class definition
and related concepts.

• Class definition — Description of what is common to every instance of a class.
• Properties — Data storage for class instances
• Methods — Special functions that implement operations that are usually performed

only on instances of the class
• Events — Messages defined by classes and broadcast by class instances when some
specific action occurs

• Attributes — Values that modify the behavior of properties, methods, events, and
classes

• Listeners — Objects that respond to a specific event by executing a callback function
when the event notice is broadcast

• Objects — Instances of classes, which contain actual data values stored in the objects'
properties

• Subclasses — Classes that are derived from other classes and that inherit the
methods, properties, and events from those classes (subclasses facilitate the reuse of
code defined in the superclass from which they are derived).

• Superclasses — Classes that are used as a basis for the creation of more specifically
defined classes (that is, subclasses).

• Packages — Folders that define a scope for class and function naming

 Role of Classes in MATLAB

3-3

Some Basic Relationships
This section discusses some of the basic concepts used by MATLAB classes.

Classes

A class is a definition that specifies certain characteristics that all instances of the class
share. These characteristics are determined by the properties, methods, and events that
define the class and the values of attributes that modify the behavior of each of these
class components. Class definitions describe how objects of the class are created and
destroyed, what data the objects contain, and how you can manipulate this data.

Class Hierarchies

It sometimes makes sense to define a new class in terms of existing classes. This
approach enables you to reuse the designs and techniques in a new class that represents
a similar entity. You accomplish this reuse by creating a subclass. A subclass defines
objects that are a subset of those objects defined by the superclass. A subclass is more
specific than its superclass and might add new properties, methods, and events to those
components inherited from the superclass.

Mathematical sets can help illustrate the relationships among classes. In the following
diagram, the set of Positive Integers is a subset of the set of Integers and a subset of
Positives. All three sets are subsets of Reals, which is a subset of All Numbers.

The definition of Positive Integers requires the additional specification that members of
the set be greater than zero. Positive Integers combine the definitions from both Integers
and Positives. The resulting subset is more specific, and therefore more narrowly defined,
than the supersets, but still shares all the characteristics that define the supersets.

3 MATLAB Classes Overview

3-4

All

Numbers

Integers

Positive

Integers

Positives

Reals

The “is a” relationship is a good way to determine if it is appropriate to define a particular
subset in terms of existing supersets. For example, each of the following statements
makes senses:

• A Positive Integer is an Integer
• A Positive Integer is a Positive number

If the “is a” relationship holds, then it is likely you can define a new class from a class or
classes that represent some more general case.

Reusing Solutions

Classes are usually organized into taxonomies to foster code reuse. For example, if you
define a class to implement an interface to the serial port of a computer, it would probably
be similar to a class designed to implement an interface to the parallel port. To reuse
code, you could define a superclass that contains everything that is common to the two
types of ports, and then derive subclasses from the superclass in which you implement
only what is unique to each specific port. Then the subclasses would inherit all the
common functionality from the superclass.

 Role of Classes in MATLAB

3-5

Objects

A class is like a template for the creation of a specific instance of the class. This instance
or object contains actual data for a particular entity that is represented by the class. For
example, an instance of a bank account class is an object that represents a specific bank
account, with an actual account number and an actual balance. This object has built into
it the ability to perform operations defined by the class, such as making deposits to and
withdrawals from the account balance.

Objects are not just passive data containers. Objects actively manage the data contained
by allowing only certain operations to be performed, by hiding data that does not need to
be public, and by preventing external clients from misusing data by performing
operations for which the object was not designed. Objects even control what happens
when they are destroyed.

Encapsulating Information

An important aspect of objects is that you can write software that accesses the
information stored in the object via its properties and methods without knowing anything
about how that information is stored, or even whether it is stored or calculated when
queried. The object isolates code that accesses the object from the internal
implementation of methods and properties. You can define classes that hide both data and
operations from any methods that are not part of the class. You can then implement
whatever interface is most appropriate for the intended use.

References
[1] Shalloway, A., J. R. Trott, Design Patterns Explained A New Perspective on Object-

Oriented Design.. Boston, MA: Addison-Wesley 2002.

[2] Gamma, E., R. Helm, R. Johnson, J. Vlissides, Design Patterns Elements of Reusable
Object-Oriented Software. Boston, MA: Addison-Wesley 1995.

[3] Freeman, E., Elisabeth Freeman, Kathy Sierra, Bert Bates, Head First Design
Patterns. Sebastopol, CA 2004.

3 MATLAB Classes Overview

3-6

See Also

Related Examples
• “Create a Simple Class” on page 2-2
• “Developing Classes — Typical Workflow” on page 3-8
• “Representing Structured Data with Classes” on page 3-19
• “Implementing Linked Lists with Classes” on page 3-31

 See Also

3-7

Developing Classes — Typical Workflow
In this section...
“Formulating a Class” on page 3-8
“Specifying Class Components” on page 3-9
“BankAccount Class Implementation” on page 3-10
“Formulating the AccountManager Class” on page 3-14
“Implementing the AccountManager Class” on page 3-15
“AccountManager Class Synopsis” on page 3-15
“Using BankAccount Objects” on page 3-17

Formulating a Class
This example discusses how to approach the design and implementation of a class. The
objective of this class is to represent a familiar concept (a bank account). However, you
can apply the same approach to most class designs.

To design a class that represents a bank account, first determine the elements of data and
the operations that form your abstraction of a bank account. For example, a bank account
has:

• An account number
• An account balance
• A status (open, closed, etc.)

You must perform certain operations on a bank account:

• Create an object for each bank account
• Deposit money
• Withdraw money
• Generate a statement
• Save and load the BankAccount object

If the balance is too low and you attempt to withdraw money, the bank account broadcasts
a notice. When this event occurs, the bank account broadcasts a notice to other entities

3 MATLAB Classes Overview

3-8

that are designed to listen for these notices. In this example, a simplified version of an
account manager program performs this task.

In this example, an account manager program determines the status of all bank accounts.
This program monitors the account balance and assigns one of three values:

• open — Account balance is a positive value
• overdrawn — Account balance is overdrawn, but by $200 or less.
• closed — Account balance is overdrawn by more than $200.

These features define the requirements of the BankAccount and AccountManager
classes. Include only what functionality is required to meet your specific objectives.
Support special types of accounts by subclassing BankAccount and adding more specific
features to the subclasses. Extend the AccountManager as required to support new
account types.

Specifying Class Components
Classes store data in properties, implement operations with methods, and support
notifications with events and listeners. Here is how the BankAccount and
AccountManager classes define these components.

Class Data

The class defines these properties to store the account number, account balance, and the
account status:

• AccountNumber — A property to store the number identifying the specific account.
MATLAB assigns a value to this property when you create an instance of the class.
Only BankAccount class methods can set this property. The SetAccess attribute is
private.

• AccountBalance — A property to store the current balance of the account. The class
operation of depositing and withdrawing money assigns values to this property. Only
BankAccount class methods can set this property. The SetAccess attribute is
private.

• AccountStatus — The BankAccount class defines a default value for this property.
The AccountManager class methods change this value whenever the value of the
AccountBalance falls below 0. The Access attribute specifies that only the
AccountManager and BankAccount classes have access to this property.

 Developing Classes — Typical Workflow

3-9

• AccountListener — Storage for the InsufficentFunds event listener. Saving a
BankAccount object does not save this property because you must recreate the
listener when loading the object.

Class Operations

These methods implement the operations defined in the class formulation:

• BankAccount — Accepts an account number and an initial balance to create an object
that represents an account.

• deposit — Updates the AccountBalance property when a deposit transaction
occurs

• withdraw — Updates the AccountBalance property when a withdrawal transaction
occurs

• getStatement — Displays information about the account
• loadobj — Recreates the account manager listener when you load the object from a
MAT-file.

Class Events

The account manager program changes the status of bank accounts that have negative
balances. To implement this action, the BankAccount class triggers an event when a
withdrawal results in a negative balance. Therefore, the triggering of the
InsufficientsFunds event occurs from within the withdraw method.

To define an event, specify a name within an events block. Trigger the event by a call to
the notify handle class method. Because InsufficientsFunds is not a predefined
event, you can name it with any char vector and trigger it with any action.

BankAccount Class Implementation
It is important to ensure that there is only one set of data associated with any object of a
BankAccount class. You would not want independent copies of the object that could
have, for example, different values for the account balance. Therefore, implement the
BankAccount class as a handle class. All copies of a given handle object refer to the
same data.

3 MATLAB Classes Overview

3-10

BankAccount Class Synopsis

BankAccount Class Discussion
classdef BankAccount < handle Handle class because there should be

only one copy of any instance of
BankAccount.“Comparison of Handle
and Value Classes” on page 7-2

 properties (Access = ?AccountManager)
 AccountStatus = 'open'
 end

AccountStatus contains the status of
the account determined by the current
balance. Access is limited to the
BankAccount and AccountManager
classes. “Class Members Access” on
page 12-28

 properties (SetAccess = private)
 AccountNumber
 AccountBalance
 end
 properties (Transient)
 AccountListener
 end

AccountStatus property access by
AccountManager class methods.

AccountNumber and AccountBalance
properties have private set access.

AccountListener property is
transient so the listener handle is not
saved.

See “Specify Property Attributes” on
page 8-7.

 events
 InsufficientFunds
 end

Class defines event called
InsufficentFunds. withdraw method
triggers event when account balance
becomes negative.

For information on events and listeners,
see “Events” .

 methods Block of ordinary methods. See “Methods
and Functions” on page 5-15 for syntax.

 Developing Classes — Typical Workflow

3-11

BankAccount Class Discussion
 function BA = BankAccount(AccountNumber,InitialBalance)
 BA.AccountNumber = AccountNumber;
 BA.AccountBalance = InitialBalance;
 BA.AccountListener = AccountManager.addAccount(BA);
 end

Constructor initializes property values
with input arguments.

AccountManager.addAccount is static
method of AccountManager class.
Creates listener for
InsufficientFunds event and stores
listener handle in AccountListener
property.

 function deposit(BA,amt)
 BA.AccountBalance = BA.AccountBalance + amt;
 if BA.AccountBalance > 0
 BA.AccountStatus = 'open';
 end
 end

deposit adjusts value of
AccountBalance property.

If AccountStatus is closed and
subsequent deposit brings
AccountBalance into positive range,
then AccountStatus is reset to open.

 function withdraw(BA,amt)
 if (strcmp(BA.AccountStatus,'closed')&& ...
 BA.AccountBalance < 0)
 disp(['Account ',num2str(BA.AccountNumber),...
 ' has been closed.'])
 return
 end
 newbal = BA.AccountBalance - amt;
 BA.AccountBalance = newbal;
 if newbal < 0
 notify(BA,'InsufficientFunds')
 end
 end

Updates AccountBalance property. If
value of account balance is negative as a
result of the withdrawal, notify
triggers InsufficentFunds event.

For more information on listeners, see
“Events and Listeners Syntax” on page
11-22.

 function getStatement(BA)
 disp('-------------------------')
 disp(['Account: ',num2str(BA.AccountNumber)])
 ab = sprintf('%0.2f',BA.AccountBalance);
 disp(['CurrentBalance: ',ab])
 disp(['Account Status: ',BA.AccountStatus])
 disp('-------------------------')
 end

Display selected information about the
account.

 end
 methods (Static)

End of ordinary methods block.

Beginning of static methods block. See
“Static Methods” on page 9-33

3 MATLAB Classes Overview

3-12

BankAccount Class Discussion
 function obj = loadobj(s)
 if isstruct(s)
 accNum = s.AccountNumber;
 initBal = s.AccountBalance;
 obj = BankAccount(accNum,initBal);
 else
 obj.AccountListener = AccountManager.addAccount(s);
 end
 end

loadobj method:

• If the load operation fails, create the
object from a struct.

• Recreates the listener using the
newly created BankAccount object
as the source.

For more information on saving and
loading objects, see “Save and Load
Process for Objects” on page 13-2

 end
end

End of static methods block

End of classdef

Expand for Class Code
classdef BankAccount < handle
 properties (Access = ?AccountManager)
 AccountStatus = 'open'
 end
 properties (SetAccess = private)
 AccountNumber
 AccountBalance
 end
 properties (Transient)
 AccountListener
 end
 events
 InsufficientFunds
 end
 methods
 function BA = BankAccount(accNum,initBal)
 BA.AccountNumber = accNum;
 BA.AccountBalance = initBal;
 BA.AccountListener = AccountManager.addAccount(BA);
 end
 function deposit(BA,amt)
 BA.AccountBalance = BA.AccountBalance + amt;
 if BA.AccountBalance > 0
 BA.AccountStatus = 'open';
 end
 end
 function withdraw(BA,amt)
 if (strcmp(BA.AccountStatus,'closed')&& BA.AccountBalance <= 0)
 disp(['Account ',num2str(BA.AccountNumber),' has been closed.'])
 return

 Developing Classes — Typical Workflow

3-13

 end
 newbal = BA.AccountBalance - amt;
 BA.AccountBalance = newbal;
 if newbal < 0
 notify(BA,'InsufficientFunds')
 end
 end
 function getStatement(BA)
 disp('-------------------------')
 disp(['Account: ',num2str(BA.AccountNumber)])
 ab = sprintf('%0.2f',BA.AccountBalance);
 disp(['CurrentBalance: ',ab])
 disp(['Account Status: ',BA.AccountStatus])
 disp('-------------------------')
 end
 end
 methods (Static)
 function obj = loadobj(s)
 if isstruct(s)
 accNum = s.AccountNumber;
 initBal = s.AccountBalance;
 obj = BankAccount(accNum,initBal);
 else
 obj.AccountListener = AccountManager.addAccount(s);
 end
 end
 end
end

Formulating the AccountManager Class
The purpose of the AccountManager class is to provide services to accounts. For the
BankAccount class, the AccountManager class listens for withdrawals that cause the
balance to drop into the negative range. When the BankAccount object triggers the
InsufficientsFunds event, the AccountManager resets the account status.

The AccountManager class stores no data so it does not need properties. The
BankAccount object stores the handle of the listener object.

The AccountManager performs two operations:

• Assign a status to each account as a result of a withdrawal
• Adds an account to the system by monitoring account balances.

Class Components

The AccountManager class implements two methods:

3 MATLAB Classes Overview

3-14

• assignStatus — Method that assigns a status to a BankAccount object. Serves as
the listener callback.

• addAccount — Method that creates the InsufficientFunds listener.

Implementing the AccountManager Class
The AccountManager class implements both methods as static because there is no need
for an AccountManager object. These methods operate on BankAccount objects.

The AccountManager is not intended to be instantiated. Separating the functionality of
the AccountManager class from the BankAccount class provides greater flexibility and
extensibility. For example, doing so enables you to:

• Extend the AccountManager class to support other types of accounts while keeping
the individual account classes simple and specialized.

• Change the criteria for the account status without affecting the compatibility of saved
and loaded BankAccount objects.

• Develop an Account superclass that factors out what is common to all accounts
without requiring each subclass to implement the account management functionality

AccountManager Class Synopsis
AccountManager Class Discussion
classdef AccountManager This class defines the

InsufficentFunds event listener and
the listener callback.

 methods (Static) There is no need to create an instance of
this class so the methods defined are
static. See “Static Methods” on page 9-
33.

 Developing Classes — Typical Workflow

3-15

AccountManager Class Discussion
 function assignStatus(BA)
 if BA.AccountBalance < 0
 if BA.AccountBalance < -200
 BA.AccountStatus = 'closed';
 else
 BA.AccountStatus = 'overdrawn';
 end
 end
 end

The assignStatus method is the
callback for the InsufficentFunds
event listener. It determines the value of a
BankAccount object AccountStatus
property based on the value of the
AccountBalance property.

The BankAccount class constructor calls
the AccountManager addAccount
method to create and store this listener.

 function lh = addAccount(BA)
 lh = addlistener(BA, 'InsufficientFunds', ...
 @(src, ~)AccountManager.assignStatus(src));
 end

addAccount creates the listener for the
InsufficentFunds event that the
BankAccount class defines.

See “Control Listener Lifecycle” on page
11-28

 end
end

end statements for methods and for
classdef.

Expand for Class Code

classdef AccountManager
 methods (Static)
 function assignStatus(BA)
 if BA.AccountBalance < 0
 if BA.AccountBalance < -200
 BA.AccountStatus = 'closed';
 else
 BA.AccountStatus = 'overdrawn';
 end
 end
 end
 function lh = addAccount(BA)
 lh = addlistener(BA, 'InsufficientFunds', ...
 @(src, ~)AccountManager.assignStatus(src));
 end
 end
end

3 MATLAB Classes Overview

3-16

Using BankAccount Objects
The BankAccount class, while overly simple, demonstrates how MATLAB classes behave.
For example, create a BankAccount object with an account number and an initial deposit
of $500:

BA = BankAccount(1234567,500)

BA =

 BankAccount with properties:

 AccountNumber: 1234567
 AccountBalance: 500
 AccountListener: [1x1 event.listener]

Use the getStatement method to check the status:

getStatement(BA)

Account: 1234567
CurrentBalance: 500.00
Account Status: open

Make a withdrawal of $600, which results in a negative account balance:

withdraw(BA,600)
getStatement(BA)

Account: 1234567
CurrentBalance: -100.00
Account Status: overdrawn

The $600 withdrawal triggered the InsufficientsFunds event. The current criteria
defined by the AccountManager class results in a status of overdrawn.

Make another withdrawal of $200:

withdraw(BA,200)
getStatement(BA)

 Developing Classes — Typical Workflow

3-17

Account: 1234567
CurrentBalance: -300.00
Account Status: closed

Now the AccountStatus has been set to closed by the listener and further attempts to
make withdrawals are blocked without triggering the event:

withdraw(BA,100)

Account 1234567 has been closed.

If the AccountBalance is returned to a positive value by a deposit, then the
AccountStatus is returned to open and withdrawals are allowed again:

deposit(BA,700)
getStatement(BA)

Account: 1234567
CurrentBalance: 400.00
Account Status: open

3 MATLAB Classes Overview

3-18

Representing Structured Data with Classes

In this section...
“Objects as Data Structures” on page 3-19
“Structure of the Data” on page 3-19
“The TensileData Class” on page 3-20
“Create an Instance and Assign Data” on page 3-20
“Restrict Properties to Specific Values” on page 3-21
“Simplifying the Interface with a Constructor” on page 3-22
“Calculate Data on Demand” on page 3-23
“Displaying TensileData Objects” on page 3-24
“Method to Plot Stress vs. Strain” on page 3-25
“TensileData Class Synopsis” on page 3-26

Objects as Data Structures
This example defines a class for storing data with a specific structure. Using a consistent
structure for data storage makes it easier to create functions that operate on the data. A
MATLAB struct with field names describing the particular data element is a useful way
to organize data. However, a class can define both the data storage (properties) and
operations that you can perform on that data (methods). This example illustrates these
advantages.

Background for the Example

For this example, the data represents tensile stress/strain measurements. These data are
used to calculate the elastic modulus of various materials. In simple terms, stress is the
force applied to a material and strain is the resulting deformation. Their ratio defines a
characteristic of the material. While this approach is an over simplification of the process,
it suffices for this example.

Structure of the Data
This table describes the structure of the data.

 Representing Structured Data with Classes

3-19

Data Description
Material char vector identifying the type of material tested
SampleNumber Number of a particular test sample
Stress Vector of numbers representing the stress applied to

the sample during the test.
Strain Vector of numbers representing the strain at the

corresponding values of the applied stress.
Modulus Number defining an elastic modulus of the material

under test, which is calculated from the stress and
strain data

The TensileData Class
This example begins with a simple implementation of the class and builds on this
implementation to illustrate how features enhance the usefulness of the class.

The first version of the class provides only data storage. The class defines a property for
each of the required data elements.

classdef TensileData
 properties
 Material
 SampleNumber
 Stress
 Strain
 Modulus
 end
end

Create an Instance and Assign Data
The following statements create a TensileData object and assign data to it:

td = TensileData;
td.Material = 'Carbon Steel';
td.SampleNumber = 001;
td.Stress = [2e4 4e4 6e4 8e4];
td.Strain = [.12 .20 .31 .40];
td.Modulus = mean(td.Stress./td.Strain);

3 MATLAB Classes Overview

3-20

Advantages of a Class vs. a Structure

Treat the TensileData object (td in the previous statements) much as you would any
MATLAB structure. However, defining a specialized data structure as a class has
advantages over using a general-purpose data structure, like a MATLAB struct:

• Users cannot accidentally misspell a field name without getting an error. For example,
typing the following:

td.Modulis = ...

would simply add a field to a structure. However, it returns an error when td is an
instance of the TensileData class.

• A class is easy to reuse. Once you have defined the class, you can easily extend it with
subclasses that add new properties.

• A class is easy to identify. A class has a name so that you can identify objects with the
whos and class functions and the Workspace browser. The class name makes it easy
to refer to records with a meaningful name.

• A class can validate individual field values when assigned, including class or value.
• A class can restrict access to fields, for example, allowing a particular field to be read,

but not changed.

Restrict Properties to Specific Values
Restrict properties to specific values by defining a property set access method. MATLAB
calls the set access method whenever setting a value for a property.

Material Property Set Function

The Material property set method restricts the assignment of the property to one of the
following strings: aluminum, stainless steel, or carbon steel.

Add this function definition to the methods block.

classdef TensileData
 properties
 Material
 SampleNumber
 Stress
 Strain
 Modulus

 Representing Structured Data with Classes

3-21

 end
 methods
 function obj = set.Material(obj,material)
 if (strcmpi(material,'aluminum') ||...
 strcmpi(material,'stainless steel') ||...
 strcmpi(material,'carbon steel'))
 obj.Material = material;
 else
 error('Invalid Material')
 end
 end
 end
end

When there is an attempt to set the Material property, MATLAB calls the
set.Material method before setting the property value.

If the value matches the acceptable values, the function set the property to that value.
The code within set method can access the property directly to avoid calling the property
set method recursively.

For example:

td = TensileData;
td.Material = 'brass';

Error using TensileData/set.Material
Invalid Material

Simplifying the Interface with a Constructor
Simplify the interface to the TensileData class by adding a constructor that:

• Enables you to pass the data as arguments to the constructor
• Assigns values to properties

The constructor is a method having the same name as the class.

methods
 function td = TensileData(material,samplenum,stress,strain)
 if nargin > 0
 td.Material = material;
 td.SampleNumber = samplenum;

3 MATLAB Classes Overview

3-22

 td.Stress = stress;
 td.Strain = strain;
 end
 end
end

Create a TensileData object fully populated with data using the following statement:

td = TensileData('carbon steel',1,...
 [2e4 4e4 6e4 8e4],...
 [.12 .20 .31 .40]);

Calculate Data on Demand
If the value of a property depends on the values of other properties, define that property
using the Dependent attribute. MATLAB does not store the values of dependent
properties. The dependent property get method determines the property value when the
property is queried.

Calculating Modulus

TensileData objects do not store the value of the Modulus property. The constructor
does not have an input argument for the value of the Modulus property. The value of the
Modulus:

• Is calculated from the Stress and Strain property values
• Must change if the value of the Stress or Strain property changes

Therefore, it is better to calculate the value of the Modulus property only when its value
is requested. Use a property get access method to calculate the value of the Modulus.

Modulus Property Get Method

The Modulus property depends on Stress and Strain, so its Dependent attribute is
true. Place the Modulus property in a separate properties block and set the
Dependent attribute.

The get.Modulus method calculates and returns the value of the Modulus property.

properties (Dependent)
 Modulus
end

 Representing Structured Data with Classes

3-23

Define the property get method in a methods block using only default attributes.

methods
 function modulus = get.Modulus(obj)
 ind = find(obj.Strain > 0);
 modulus = mean(obj.Stress(ind)./obj.Strain(ind));
 end
end

This method calculates the average ratio of stress to strain data after eliminating zeros in
the denominator data.

MATLAB calls the get.Modulus method when the property is queried. For example,

td = TensileData('carbon steel',1,...
 [2e4 4e4 6e4 8e4],...
 [.12 .20 .31 .40]);
td.Modulus

ans =
 1.9005e+005

Modulus Property Set Method

To set the value of a Dependent property, the class must implement a property set
method. There is no need to allow explicit setting of the Modulus property. However, a
set method enables you to provide a customized error message. The Modulus set method
references the current property value and then returns an error:

methods
 function obj = set.Modulus(obj,~)
 fprintf('%s%d\n','Modulus is: ',obj.Modulus)
 error('You cannot set the Modulus property');
 end
end

Displaying TensileData Objects
The TensileData class overloads the disp method. This method controls object display
in the command window.

The disp method displays the value of the Material, SampleNumber, and Modulus
properties. It does not display the Stress and Strain property data. These properties
contain raw data that is not easily viewed in the command window.

3 MATLAB Classes Overview

3-24

The disp method uses fprintf to display formatted text in the command window:
methods
 function disp(td)
 fprintf(1,...
 'Material: %s\nSample Number: %g\nModulus: %1.5g\n',...
 td.Material,td.SampleNumber,td.Modulus);
 end
end

Method to Plot Stress vs. Strain
It is useful to view a graph of the stress/strain data to determine the behavior of the
material over a range of applied tension. The TensileData class overloads the MATLAB
plot function.

The plot method creates a linear graph of the stress versus strain data and adds a title
and axis labels to produce a standardized graph for the tensile data records:

methods
 function plot(td,varargin)
 plot(td.Strain,td.Stress,varargin{:})
 title(['Stress/Strain plot for Sample',...
 num2str(td.SampleNumber)])
 ylabel('Stress (psi)')
 xlabel('Strain %')
 end
end

The first argument to this method is a TensileData object, which contains the data.

The method passes a variable list of arguments (varargin) directly to the built-in plot
function. The TensileData plot method allows you to pass line specifier arguments or
property name-value pairs.

For example:

td = TensileData('carbon steel',1,...
 [2e4 4e4 6e4 8e4],[.12 .20 .31 .40]);
plot(td,'-+b','LineWidth',2)

 Representing Structured Data with Classes

3-25

TensileData Class Synopsis
Example Code Discussion
classdef TensileData Value class enables independent copies of

object. For more information, see
“Comparison of Handle and Value
Classes” on page 7-2

3 MATLAB Classes Overview

3-26

Example Code Discussion
 properties
 Material
 SampleNumber
 Stress
 Strain
 end

See “Structure of the Data” on page 3-19

 properties (Dependent)
 Modulus
 end

Calculate Modulus when queried. For
information about this code, see
“Calculate Data on Demand” on page 3-
23.

For general information, see “Set and Get
Methods for Dependent Properties” on
page 8-64

 methods For general information about methods,
see “Ordinary Methods” on page 9-8

 function td = TensileData(material,samplenum,...
 stress,strain)
 if nargin > 0
 td.Material = material;
 td.SampleNumber = samplenum;
 td.Stress = stress;
 td.Strain = strain;
 end
 end

For information about this code, see
“Simplifying the Interface with a
Constructor” on page 3-22.

For general information about
constructors, see “Class Constructor
Methods” on page 9-22

 function obj = set.Material(obj,material)
 if (strcmpi(material,'aluminum') ||...
 strcmpi(material,'stainless steel') ||...
 strcmpi(material,'carbon steel'))
 obj.Material = material;
 else
 error('Invalid Material')
 end
 end

Restrict possible values for Material
property.

For information about this code, see
“Restrict Properties to Specific Values” on
page 3-21.

For general information about property
set methods, see “Property Set Methods”
on page 8-58.

 Representing Structured Data with Classes

3-27

Example Code Discussion
 function m = get.Modulus(obj)
 ind = find(obj.Strain > 0);
 m = mean(obj.Stress(ind)./obj.Strain(ind));
 end

Calculate Modulus property when
queried.

For information about this code, see
“Modulus Property Get Method” on page
3-23.

For general information about property
get methods, see “Property Get Methods”
on page 8-62.

 function obj = set.Modulus(obj,~)
 fprintf('%s%d\n','Modulus is: ',obj.Modulus)
 error('You cannot set Modulus property');
 end

Add set method for Dependent Modulus
property. For information about this code,
see “Modulus Property Set Method” on
page 3-24.

For general information about property
set methods, see “Property Set Methods”
on page 8-58.

 function disp(td)
 fprintf(1,'Material: %s\nSample Number: %g\nModulus: %1.5g\n',...
 td.Material,td.SampleNumber,td.Modulus)
 end

Overload disp method to display certain
properties.

For information about this code, see
“Displaying TensileData Objects” on page
3-24

For general information about
overloading disp, see “Overloading the
disp Function” on page 19-43

 function plot(td,varargin)
 plot(td.Strain,td.Stress,varargin{:})
 title(['Stress/Strain plot for Sample',...
 num2str(td.SampleNumber)])
 ylabel('Stress (psi)')
 xlabel('Strain %')
 end

Overload plot function to accept
TensileData objects and graph stress
vs. strain.

“Method to Plot Stress vs. Strain” on page
3-25

 end
end

end statements for methods and for
classdef.

3 MATLAB Classes Overview

3-28

Expand for Class Code

classdef TensileData
 properties
 Material
 SampleNumber
 Stress
 Strain
 end
 properties (Dependent)
 Modulus
 end

 methods
 function td = TensileData(material,samplenum,stress,strain)
 if nargin > 0
 td.Material = material;
 td.SampleNumber = samplenum;
 td.Stress = stress;
 td.Strain = strain;
 end
 end

 function obj = set.Material(obj,material)
 if (strcmpi(material,'aluminum') ||...
 strcmpi(material,'stainless steel') ||...
 strcmpi(material,'carbon steel'))
 obj.Material = material;
 else
 error('Invalid Material')
 end
 end

 function m = get.Modulus(obj)
 ind = find(obj.Strain > 0);
 m = mean(obj.Stress(ind)./obj.Strain(ind));
 end

 function obj = set.Modulus(obj,~)
 fprintf('%s%d\n','Modulus is: ',obj.Modulus)
 error('You cannot set Modulus property');
 end

 function disp(td)

 Representing Structured Data with Classes

3-29

 sprintf('Material: %s\nSample Number: %g\nModulus: %1.5g\n',...
 td.Material,td.SampleNumber,td.Modulus)
 end

 function plot(td,varargin)
 plot(td.Strain,td.Stress,varargin{:})
 title(['Stress/Strain plot for Sample ',...
 num2str(td.SampleNumber)])
 xlabel('Strain %')
 ylabel('Stress (psi)')
 end
 end
end

See Also

More About
• “Class Components” on page 5-5

3 MATLAB Classes Overview

3-30

Implementing Linked Lists with Classes
In this section...
“Class Definition Code” on page 3-31
“dlnode Class Design” on page 3-31
“Create Doubly Linked List” on page 3-32
“Why a Handle Class for Linked Lists?” on page 3-34
“dlnode Class Synopsis” on page 3-34
“Specialize the dlnode Class” on page 3-46

Class Definition Code
For the class definition code listing, see “dlnode Class Synopsis” on page 3-34.

To use the class, create a folder named @dlnode and save dlnode.m to this folder. The
parent folder of @dlnode must be on the MATLAB path. Alternatively, save dlnode.m to
a path folder.

dlnode Class Design
dlnode is a class for creating doubly linked lists in which each node contains:

• Data array
• Handle to the next node
• Handle to the previous node

Each node has methods that enable the node to be:

• Inserted before a specified node in a linked list
• Inserted after a specific node in a linked list
• Removed from a list

Class Properties

The dlnode class implements each node as a handle object with three properties:

 Implementing Linked Lists with Classes

3-31

• Data — Contains the data for this node
• Next — Contains the handle of the next node in the list (SetAccess = private)
• Prev — Contains the handle of the previous node in the list (SetAccess = private)

This diagram shows a list with three-nodes n1, n2, and n3. It also shows how the nodes
reference the next and previous nodes.

n3

Properties

Next

Prev

n2

Properties

Next

Prev

n1

Properties

Next

Prev

n2.Nextn2n2.Prev

Class Methods

The dlnode class implements the following methods:

• dlnode — Construct a node and assign the value passed as an input to the Data
property

• insertAfter — Insert this node after the specified node
• insertBefore — Insert this node before the specified node
• removeNode — Remove this node from the list and reconnect the remaining nodes
• clearList — Remove large lists efficiently
• delete — Private method called by MATLAB when deleting the list.

Create Doubly Linked List
Create a node by passing the node's data to the dlnode class constructor. For example,
these statements create three nodes with data values 1, 2, and 3:

n1 = dlnode(1);
n2 = dlnode(2);
n3 = dlnode(3);

Build these nodes into a doubly linked list using the class methods designed for this
purpose:

3 MATLAB Classes Overview

3-32

n2.insertAfter(n1) % Insert n2 after n1
n3.insertAfter(n2) % Insert n3 after n2

Now the three nodes are linked:

n1.Next % Points to n2

ans =

 dlnode with properties:

 Data: 2
 Next: [1x1 dlnode]
 Prev: [1x1 dlnode]

n2.Next.Prev % Points back to n2

ans =

 dlnode with properties:

 Data: 2
 Next: [1x1 dlnode]
 Prev: [1x1 dlnode]

n1.Next.Next % Points to n3

ans =

 dlnode with properties:

 Data: 3
 Next: []
 Prev: [1x1 dlnode]

n3.Prev.Prev % Points to n1

ans =

 dlnode with properties:

 Data: 1
 Next: [1x1 dlnode]
 Prev: []

 Implementing Linked Lists with Classes

3-33

Why a Handle Class for Linked Lists?
Each node is unique in that no two nodes can be previous to or next to the same node.

For example, a node object, node, contains in its Next property the handle of the next
node object, node.Next. Similarly, the Prev property contains the handle of the previous
node, node.Prev. Using the three-node linked list defined in the previous section, you
can demonstrate that the following statements are true:

n1.Next == n2
n2.Prev == n1

Now suppose that you assign n2 to x:

x = n2;

The following two equalities are then true:

x == n1.Next
x.Prev == n1

But each instance of a node is unique so there is only one node in the list that can satisfy
the conditions of being equal to n1.Next and having a Prev property that contains a
handle to n1. Therefore, x must point to the same node as n2.

There has to be a way for multiple variables to refer to the same object. The MATLAB
handle class provides a means for both x and n2 to refer to the same node.

The handle class defines the eq method (use methods('handle') to list the handle
class methods), which enables the use of the == operator with all handle objects.

Related Information

For more information on handle classes, see “Comparison of Handle and Value Classes”
on page 7-2.

dlnode Class Synopsis
This section describes the implementation of the dlnode class.

3 MATLAB Classes Overview

3-34

Example Code Discussion
classdef dlnode < handle “dlnode Class Design” on page 3-31

“Why a Handle Class for Linked Lists?”
on page 3-34

“Comparison of Handle and Value
Classes” on page 7-2

 properties
 Data
 end

“dlnode Class Design” on page 3-31

 properties (SetAccess = private)
 Next = dlnode.empty
 Prev = dlnode.empty
 end

“Property Attributes” on page 8-9:
SetAccess.

Initialize these properties to empty
dlnode objects.

For general information about properties,
see “Property Syntax” on page 8-5

 methods For general information about methods,
see“Methods in Class Design” on page 9-
2

 function node = dlnode(Data)
 if (nargin > 0)
 node.Data = Data;
 end
 end

Creating an individual node (not
connected) requires only the data.

For general information about
constructors, see “Guidelines for
Constructors” on page 9-24

 function insertAfter(newNode, nodeBefore)
 removeNode(newNode);
 newNode.Next = nodeBefore.Next;
 newNode.Prev = nodeBefore;
 if ~isempty(nodeBefore.Next)
 nodeBefore.Next.Prev = newNode;
 end
 nodeBefore.Next = newNode;
 end

Insert node into a doubly linked list after
specified node, or link the two specified
nodes if there is not already a list. Assigns
the correct values for Next and Prev
properties.

“Insert Nodes” on page 3-39

 Implementing Linked Lists with Classes

3-35

Example Code Discussion
 function insertBefore(newNode, nodeAfter)
 removeNode(newNode);
 newNode.Next = nodeAfter;
 newNode.Prev = nodeAfter.Prev;
 if ~isempty(nodeAfter.Prev)
 nodeAfter.Prev.Next = newNode;
 end
 nodeAfter.Prev = newNode;
 end

Insert node into doubly linked list before
specified node, or link the two specified
nodes if there is not already a list. This
method assigns correct values for Next
and Prev properties.

See “Insert Nodes” on page 3-39
 function removeNode(node)
 if ~isscalar(node)
 error('Nodes must be scalar')
 end
 prevNode = node.Prev;
 nextNode = node.Next;
 if ~isempty(prevNode)
 prevNode.Next = nextNode;
 end
 if ~isempty(nextNode)
 nextNode.Prev = prevNode;
 end
 node.Next = = dlnode.empty;
 node.Prev = = dlnode.empty;
 end

Remove node and fix the list so that
remaining nodes are properly connected.
node argument must be scalar.

Once there are no references to node,
MATLAB deletes it.

“Remove a Node” on page 3-41

 function clearList(node)
 prev = node.Prev;
 next = node.Next;
 removeNode(node)
 while ~isempty(next)
 node = next;
 next = node.Next;
 removeNode(node);
 end
 while ~isempty(prev)
 node = prev;
 prev = node.Prev;
 removeNode(node)
 end
 end

Avoid recursive calls to destructor as a
result of clearing the list variable. Loop
through list to disconnect each node.
When there are no references to a node,
MATLAB calls the class destructor (see
the delete method) before deleting it.

 methods (Access = private)
 function delete(node)
 clearList(node)
 end

Class destructor method. MATLAB calls
the delete method you delete a node
that is still connected to the list.

 end
end

End of private methods and end of class
definition.

3 MATLAB Classes Overview

3-36

Expand for Class Code

classdef dlnode < handle
 % dlnode A class to represent a doubly-linked node.
 % Link multiple dlnode objects together to create linked lists.
 properties
 Data
 end
 properties(SetAccess = private)
 Next = dlnode.empty
 Prev = dlnode.empty
 end

 methods
 function node = dlnode(Data)
 % Construct a dlnode object
 if nargin > 0
 node.Data = Data;
 end
 end

 function insertAfter(newNode, nodeBefore)
 % Insert newNode after nodeBefore.
 removeNode(newNode);
 newNode.Next = nodeBefore.Next;
 newNode.Prev = nodeBefore;
 if ~isempty(nodeBefore.Next)
 nodeBefore.Next.Prev = newNode;
 end
 nodeBefore.Next = newNode;
 end

 function insertBefore(newNode, nodeAfter)
 % Insert newNode before nodeAfter.
 removeNode(newNode);
 newNode.Next = nodeAfter;
 newNode.Prev = nodeAfter.Prev;
 if ~isempty(nodeAfter.Prev)
 nodeAfter.Prev.Next = newNode;
 end
 nodeAfter.Prev = newNode;
 end

 function removeNode(node)

 Implementing Linked Lists with Classes

3-37

 % Remove a node from a linked list.
 if ~isscalar(node)
 error('Input must be scalar')
 end
 prevNode = node.Prev;
 nextNode = node.Next;
 if ~isempty(prevNode)
 prevNode.Next = nextNode;
 end
 if ~isempty(nextNode)
 nextNode.Prev = prevNode;
 end
 node.Next = dlnode.empty;
 node.Prev = dlnode.empty;
 end

 function clearList(node)
 % Clear the list before
 % clearing list variable
 prev = node.Prev;
 next = node.Next;
 removeNode(node)
 while ~isempty(next)
 node = next;
 next = node.Next;
 removeNode(node);
 end
 while ~isempty(prev)
 node = prev;
 prev = node.Prev;
 removeNode(node)
 end
 end
 end

 methods (Access = private)
 function delete(node)
 clearList(node)
 end
 end
end

3 MATLAB Classes Overview

3-38

Class Properties

Only dlnode class methods can set the Next and Prev properties because these
properties have private set access (SetAccess = private). Using private set access
prevents client code from performing any incorrect operation with these properties. The
dlnode class methods perform all the operations that are allowed on these nodes.

The Data property has public set and get access, allowing you to query and modify the
value of Data as required.

Here is how the dlnode class defines the properties:

properties
 Data
end
properties(SetAccess = private)
 Next = dlnode.empty;
 Prev = dlnode.empty;
end

Construct a Node Object

To create a node object, specify the node's data as an argument to the constructor:

function node = dlnode(Data)
 if nargin > 0
 node.Data = Data;
 end
end

Insert Nodes

There are two methods for inserting nodes into the list — insertAfter and
insertBefore. These methods perform similar operations, so this section describes only
insertAfter in detail.

function insertAfter(newNode, nodeBefore)
 removeNode(newNode);
 newNode.Next = nodeBefore.Next;
 newNode.Prev = nodeBefore;
 if ~isempty(nodeBefore.Next)
 nodeBefore.Next.Prev = newNode;
 end
 nodeBefore.Next = newNode;
end

 Implementing Linked Lists with Classes

3-39

How insertAfter Works

First, insertAfter calls the removeNode method to ensure that the new node is not
connected to any other nodes. Then, insertAfter assigns the newNode Next and Prev
properties to the handles of the nodes that are after and before the newNode location in
the list.

For example, suppose that you want to insert a new node, nnew, after an existing node,
n1, in a list containing n1—n2—n3.

First, create nnew:

nnew = dlnode(rand(3));

Next, call insertAfter to insert nnew into the list after n1:

nnew.insertAfter(n1)

The insertAfter method performs the following steps to insert nnew in the list between
n1 and n2:

• Set nnew.Next to n1.Next (n1.Next is n2):

nnew.Next = n1.Next;
• Set nnew.Prev to n1

nnew.Prev = n1;
• If n1.Next is not empty, then n1.Next is still n2, so n1.Next.Prev is n2.Prev,

which is set to nnew

n1.Next.Prev = nnew;
• n1.Next is now set to nnew

n1.Next = nnew;

3 MATLAB Classes Overview

3-40

Remove a Node

The removeNode method removes a node from a list and reconnects the remaining
nodes. The insertBefore and insertAfter methods always call removeNode on the
node to insert before attempting to connect it to a linked list.

Calling removeNode ensures that the node is in a known state before assigning it to the
Next or Prev property:

function removeNode(node)
 if ~isscalar(node)
 error('Input must be scalar')
 end
 prevNode = node.Prev;
 nextNode = node.Next;
 if ~isempty(prevNode)
 prevNode.Next = nextNode;
 end
 if ~isempty(nextNode)
 nextNode.Prev = prevNode;
 end
 node.Next = dlnode.empty;
 node.Prev = dlnode.empty;
end

For example, suppose that you remove n2 from a three-node list (n1–n2–n3):

n2.removeNode;

 Implementing Linked Lists with Classes

3-41

n3

Properties

Next

Prev

n2

Properties

Next

Prev

n1

Properties

Next

Prev

Disconnect the nodes

removeNode removes n2 from the list and reconnects the remaining nodes with the
following steps:

n1 = n2.Prev;
n3 = n2.Next;
if n1 exists, then
 n1.Next = n3;
if n3 exists, then
 n3.Prev = n1

The list is rejoined because n1 connects to n3 and n3 connects to n1. The final step is to
ensure that n2.Next and n2.Prev are both empty (that is, n2 is not connected):

n2.Next = dlnode.empty;
n2.Prev = dlnode.empty;

Removing a Node from a List

Suppose that you create a list with 10 nodes and save the handle to the head of the list:

head = dlnode(1);
for i = 10:-1:2
 new = dlnode(i);
 insertAfter(new,head);
end

Now remove the third node (Data property assigned the value 3):

removeNode(head.Next.Next)

Now the third node in the list has a data value of 4:

3 MATLAB Classes Overview

3-42

head.Next.Next

ans =

 dlnode with properties:

 Data: 4
 Next: [1x1 dlnode]
 Prev: [1x1 dlnode]

And the previous node has a Data value of 2:

head.Next

ans =

 dlnode with properties:

 Data: 2
 Next: [1x1 dlnode]
 Prev: [1x1 dlnode]

Delete a Node

To delete a node, call the removeNode method on that node. The removeNode method
disconnects the node and reconnects the list before allowing MATLAB to destroy the
removed node. MATLAB destroys the node once references to it by other nodes are
removed and the list is reconnected.

 Implementing Linked Lists with Classes

3-43

n3

Properties

Next

Prev

n2

Properties

Next

Prev

n2

Properties

Next

Prev

n1

Properties

Next

Prev

>> removeNode(n2)

>> clear(n2)

MATLAB calls delete(n2)

Delete the List

When you create a linked list and assign a variable that contains, for example, the head or
tail of the list, clearing that variable causes the destructor to recurse through the entire
list. With large enough list, clearing the list variable can result in MATLAB exceeding its
recursion limit.

The clearList method avoids recursion and improves the performance of deleting large
lists by looping over the list and disconnecting each node. clearList accepts the handle
of any node in the list and removes the remaining nodes.

function clearList(node)
 if ~isscalar(node)
 error('Input must be scalar')
 end
 prev = node.Prev;
 next = node.Next;
 removeNode(node)
 while ~isempty(next)
 node = next;
 next = node.Next;

3 MATLAB Classes Overview

3-44

 removeNode(node);
 end
 while ~isempty(prev)
 node = prev;
 prev = node.Prev;
 removeNode(node)
 end
end

For example, suppose that you create a list with many nodes:

head = dlnode(1);
for k = 100000:-1:2
 nextNode = dlnode(k);
 insertAfter(nextNode,head)
end

The variable head contains the handle to the node at the head of the list:

head

head =

 dlnode with properties:

 Data: 1
 Next: [1x1 dlnode]
 Prev: []

head.Next

ans =

 dlnode with properties:

 Data: 2
 Next: [1x1 dlnode]
 Prev: [1x1 dlnode]

You can call clearList to remove the whole list:

clearList(head)

The only nodes that have not been deleted by MATLAB are those nodes for which there
exists an explicit reference. In this case, those references are head and nextNode:

 Implementing Linked Lists with Classes

3-45

head

head =

 dlnode with properties:

 Data: 1
 Next: []
 Prev: []

nextNode

nextNode =

 dlnode with properties:

 Data: 2
 Next: []
 Prev: []

You can remove these nodes by clearing the variables:

clear head nextNode

The delete Method

The delete method simply calls the clearList method:

methods (Access = private)
 function delete(node)
 clearList(node)
 end
end

The delete method has private access to prevent users from calling delete when
intending to delete a single node. MATLAB calls delete implicitly when the list is
destroyed.

To delete a single node from the list, use the removeNode method.

Specialize the dlnode Class
The dlnode class implements a doubly linked list and provides a convenient starting
point for creating more specialized types of linked lists. For example, suppose that you
want to create a list in which each node has a name.

3 MATLAB Classes Overview

3-46

Rather than copying the code used to implement the dlnode class, and then expanding
upon it, you can derive a new class from dlnode (that is, subclass dlnode). You can
create a class that has all the features of dlnode and also defines its own additional
features. And because dlnode is a handle class, this new class is a handle class too.

NamedNode Class Definition

To use the class, create a folder named @NamedNode and save NamedNode.m to this
folder. The parent folder of @NamedNode must be on the MATLAB path. Alternatively, save
NamedNode.m to a path folder.

The following class definition shows how to derive the NamedNode class from the dlnode
class:

classdef NamedNode < dlnode
 properties
 Name = ''
 end
 methods
 function n = NamedNode (name,data)
 if nargin == 0
 name = '';
 data = [];
 end
 n = n@dlnode(data);
 n.Name = name;
 end
 end
end

The NamedNode class adds a Name property to store the node name.

The constructor calls the class constructor for the dlnode class, and then assigns a value
to the Name property.

Use NamedNode to Create a Doubly Linked List

Use the NamedNode class like the dlnode class, except that you specify a name for each
node object. For example:

n(1) = NamedNode('First Node',100);
n(2) = NamedNode('Second Node',200);
n(3) = NamedNode('Third Node',300);

 Implementing Linked Lists with Classes

3-47

Now use the insert methods inherited from dlnode to build the list:

n(2).insertAfter(n(1))
n(3).insertAfter(n(2))

A single node displays its name and data when you query its properties:

n(1).Next

ans =

 NamedNode with properties:

 Name: 'Second Node'
 Data: 200
 Next: [1x1 NamedNode]
 Prev: [1x1 NamedNode]

n(1).Next.Next

ans =

 NamedNode with properties:

 Name: 'Third Node'
 Data: 300
 Next: []
 Prev: [1x1 NamedNode]

n(3).Prev.Prev

ans =

 NamedNode with properties:

 Name: 'First Node'
 Data: 100
 Next: [1x1 NamedNode]
 Prev: []

3 MATLAB Classes Overview

3-48

See Also

More About
• “The Handle Superclass” on page 7-13

 See Also

3-49

Static Data

4

Static Data
In this section...
“What Is Static Data” on page 4-2
“Static Variable” on page 4-2
“Static Data Object” on page 4-3
“Constant Data” on page 4-5

What Is Static Data
Static data refers to data that all objects of the class share and that you can modify after
creation.

Use static data to define counters used by class instances or other data that is shared
among all objects of a class. Unlike instance data, static data does not vary from one
object to another. MATLAB provides several ways to define static data, depending on your
requirements.

Static Variable
Classes can use a persistent variable to store static data. Define a static method or local
function in which you create a persistent variable. The method or function provides
access to this variable. Use this technique when you want to store one or two variables.

Saving an object of the class defining the persistent variable does not save the static data
associated with the class. To save your static data in an object, or define more extensive
data, use the static data object technique “Static Data Object” on page 4-3

Implementation

The StoreData class defines a static method that declares a persistent variable Var. The
setgetVar method provides set and get access to the data in the persistent variable.
Because the setgetVar method has public access, you can set and get the data stored in
the persistent variable globally. Control the scope of access by setting the method Access
attribute.

classdef StoreData
 methods (Static)

4 Static Data

4-2

 function out = setgetVar(data)
 persistent Var;
 if nargin
 Var = data;
 end
 out = Var;
 end
 end
end

Set the value of the variable by calling setgetVar with an input argument. The method
assigns the input value to the persistent variable:

StoreData.setgetVar(10);

Get the value of the variable by calling setgetVar with no input argument:

a = StoreData.setgetVar

a =

 10

Clear the persistent variable by calling clear on the StoreData class:

clear StoreData
a = StoreData.setgetVar

a =

 []

Add a method like setgetVar to any class in which you want the behavior of a static
property.

Static Data Object
To store more extensive data, define a handle class with public properties. Assign an
object of the class to a constant property of the class that uses the static data. This
technique is useful when you want to:

• Add more properties or methods that modify the data.
• Save objects of the data class and reload the static data.

 Static Data

4-3

Implementation

The SharedData class is a handle class, which enables you to reference the same object
data from multiple handle variables:

classdef SharedData < handle
 properties
 Data1
 Data2
 end
end

The UseData class is the stub of a class that uses the data stored in the SharedData
class. The UseData class stores the handle to a SharedData object in a constant
property.

classdef UseData
 properties (Constant)
 Data = SharedData
 end
 % Class code here
end

The Data property contains the handle of the SharedData object. MATLAB constructs
the SharedData object when loading the UseData class. All subsequently created
instances of the UseData class refer to the same SharedData object.

To initialize the SharedData object properties, load theUseData class by referencing the
constant property.

h = UseData.Data

h =

 SharedData with properties:

 Data1: []
 Data2: []

Use the handle to the SharedData object to assign data to property values:

h.Data1 = 'MyData1';
h.Data2 = 'MyData2';

Each instance of the UseData class refers to the same handle object:

4 Static Data

4-4

a1 = UseData;
a2 = UseData;

Reference the data using the object variable:

a1.Data.Data1

ans =

MyData1

Assign a new value to the properties in the SharedData object:

a1.Data.Data1 = rand(3);

All new and existing objects of the UseData class share the same SharedData object. a2
now has the rand(3) data that was assigned to a1 in the previous step:

a2.Data.Data1

ans =

 0.8147 0.9134 0.2785
 0.9058 0.6324 0.5469
 0.1270 0.0975 0.9575

To reinitialize the constant property, clear all instances of the UseData class and then
clear the class:

clear a1 a2
clear UseData

Constant Data
To store constant values that do not change, assign the data to a constant property. All
instances of the class share the same value for that property. Control the scope of access
to constant properties by setting the property Access attribute.

The only way to change the value of a constant property is to change the class definition.
Use constant properties like public final static fields in Java®.

See Also
clear | persistent

 See Also

4-5

Related Examples
• “Define Class Properties with Constant Values” on page 15-2
• “Static Methods” on page 9-33

More About
• “Method Attributes” on page 9-5
• “Property Attributes” on page 8-9
• “Static Properties” on page 5-67

4 Static Data

4-6

Class Definition—Syntax Reference

• “Class Files and Folders” on page 5-2
• “Class Components” on page 5-5
• “Classdef Block” on page 5-10
• “Class Properties” on page 5-12
• “Methods and Functions” on page 5-15
• “Events and Listeners” on page 5-20
• “Attribute Specification” on page 5-22
• “Call Superclass Methods on Subclass Objects” on page 5-25
• “Representative Class Code” on page 5-28
• “MATLAB Code Analyzer Warnings” on page 5-34
• “Objects In Conditional Statements” on page 5-37
• “Operations on Objects” on page 5-44
• “Use of Editor and Debugger with Classes” on page 5-49
• “Automatic Updates for Modified Classes” on page 5-51
• “Compatibility with Previous Versions” on page 5-59
• “Comparison of MATLAB and Other OO Languages” on page 5-62

5

Class Files and Folders

In this section...
“Class Definition Files” on page 5-2
“Options for Class Folders” on page 5-2
“Options for Class Files” on page 5-2
“Group Classes with Package Folders” on page 5-3

Class Definition Files
Put class definition code in files that have the .m extension. The name of the file must be
the same as the name of the class followed by the .m extension.

For information on the code that defines a class, see “Class Components” on page 5-5.

Options for Class Folders
There are two ways to create folders that contain class-definition files:

• Path folder — a folder that is on the MATLAB path.
• Class folder — a folder that is in a path folder and is named with the @ character and

the class name. For example:

@MyClass

Class folders are not directly on the MATLAB path. The path folder that contains the class
folder is on the MATLAB path.

Options for Class Files
There are two ways to specify classes with respect to files and folders:

• Create a single, self-contained class definition file in a path folder or a class folder
• Define a class in multiple files, which requires you to use a class folder inside a path

folder

5 Class Definition—Syntax Reference

5-2

Create a Single, Self-Contained Class Definition File

Create a single, self-contained class definition file in a folder on the MATLAB® path. The
name of the file must match the class (and constructor) name and must have the .m
extension. Define the class entirely in this file. You can put other single-file classes in this
folder.

The following diagram shows an example of this folder organization. pathfolder is a
folder on the MATLAB path.

Contains classdef and methods for ClassNameAClassNameA.m

pathfolder

Contains classdef and methods for ClassNameBClassNameB.m

Contains classdef and methods for ClassNameCClassNameC.m

...

A function on the pathordinaryFunction.m

Distribute the Class Definition to Multiple Files

If you use multiple files to define a class, put all the class-definition files (the file
containing the classdef and all class method files) in a single @ClassName folder. That
class folder must be inside a folder that is on the MATLAB path. You can define only one
class in a class folder.

pathfolder

ClassNameB.m

Contains classdefClassNameA.m

@ClassNameA

Class method in separate !leclassMethod.m

Contains entire class de!nition

A path folder can contain classes defined in both class folders and single files without a
class folder.

Group Classes with Package Folders
The parent folder to a package folder is on the MATLAB path, but the package folder is
not. Package folders (which always begin with a + character) can contain multiple class

 Class Files and Folders

5-3

definitions, package-scoped functions, and other packages. A package folder defines a
new name space in which you can reuse class names. Use the package name to refer to
classes and functions defined in package folders (for example,
packagefld1.ClassNameA(), packagefld2.packageFunction()).

pathfolder

ClassNameB.m

+packagefld1

+packagefld2

Contains classdefClassNameA.m

@ClassNameA

Class method in separate !leclassMethod.m

Contains entire class de!nition

ClassNameB.m

De!nes a new name space

packageFunction.m

ClassNameA.m

See Also

More About
• “Folders Containing Class Definitions” on page 6-17
• “Packages Create Namespaces” on page 6-25
• “Methods in Separate Files” on page 9-11

5 Class Definition—Syntax Reference

5-4

Class Components

In this section...
“Class Building Blocks” on page 5-5
“Class Definition Block” on page 5-5
“Properties Block” on page 5-6
“Methods Block” on page 5-6
“Events Block” on page 5-7
“A Complete Class” on page 5-8
“Enumeration Classes” on page 5-8
“Related Information” on page 5-9

Class Building Blocks
MATLAB organizes class definition code into modular blocks, delimited by keywords. All
keywords have an associated end statement:

• classdef...end — Definition of all class components
• properties...end — Declaration of property names, specification of property

attributes, assignment of default values
• methods...end — Declaration of method signatures, method attributes, and function

code
• events...end — Declaration of event name and attributes
• enumeration...end — Declaration of enumeration members and enumeration

values for enumeration classes.

properties, methods, events, and enumeration are keywords only within a
classdef block.

Class Definition Block
The classdef block contains the class definition within a file that starts with the
classdef keyword and terminates with the end keyword.

 Class Components

5-5

classdef (ClassAttributes) ClassName < SuperClass
 ...
end

For example, this classdef defines a class called MyClass that subclasses the handle
class, but cannot be used to derive subclasses:

classdef (Sealed) MyClass < handle
 ...
end

See, “Classdef Block” on page 5-10 for more syntax information.

Properties Block
The properties block (one for each unique set of attribute specifications) contains
property definitions, including optional initial values. The properties block starts with the
properties keyword and terminates with the end keyword.

classdef ClassName
 properties (PropertyAttributes)
 ...
 end
 ...
end

For example, this class defines a property called Prop1 that has private access and has a
default value equal to the output of the date function.

classdef MyClass
 properties (SetAccess = private)
 Prop1 = date
 end
 ...
end

See “Property Definition” on page 8-17 for more information.

Methods Block
The methods block (one for each unique set of attribute specifications) contains function
definitions for the class methods. The methods block starts with the methods keyword
and terminates with the end keyword.

5 Class Definition—Syntax Reference

5-6

classdef ClassName
 methods (MethodAttributes)
 ...
 end
 ...
end

For example:

classdef MyClass
 methods (Access = private)
 function obj = myMethod(obj)
 ...
 end
 end
end

See “Methods and Functions” on page 5-15 for more information.

Events Block
The events block (one for each unique set of attribute specifications) contains the names
of events that this class declares. The events block starts with the events keyword and
terminates with the end keyword.

classdef ClassName
 events (EventAttributes)
 EventName
 end
 ...
end

For example, this class defined an event called StateChange with a ListenAccess set
to protected:

classdef EventSource
 events (ListenAccess = protected)
 StateChanged
 end
 ...
end

See “Events and Listeners” on page 5-20 for more information.

 Class Components

5-7

A Complete Class
A complete class definition contains any combination of properties, methods, and events
code blocks.

classdef (Sealed) MyClass < handle
 properties (SetAccess = private)
 Prop1 = datenum(date)
 end
 properties
 Prop2
 end
 methods
 function obj = MyClass(x)
 obj.Prop2 = x;
 end
 end
 methods (Access = {?MyOtherClass})
 function d = myMethod(obj)
 d = obj.Prop1 + x;
 end
 end
 events (ListenAccess = protected)
 StateChanged
 end
end

Enumeration Classes
Enumeration classes are specialized classes that define a fixed set of names representing
a single type of value. Enumeration classes use an enumeration block that contains the
enumeration members defined by the class.

The enumeration block starts with the enumeration keyword and terminates with the
end keyword.

classdef ClassName < SuperClass
 enumeration
 EnumerationMember
 end
 ...
end

5 Class Definition—Syntax Reference

5-8

For example, this class defines two enumeration members that represent logical false
and true:

classdef Boolean < logical
 enumeration
 No (0)
 Yes (1)
 end
end

See, “Define Enumeration Classes” on page 14-5 for more information.

Related Information
“Folders Containing Class Definitions” on page 6-17

 Class Components

5-9

Classdef Block
In this section...
“How to Specify Attributes and Superclasses” on page 5-10
“Class Attribute Syntax” on page 5-10
“Superclass Syntax” on page 5-11
“Local Functions in Class File” on page 5-11

How to Specify Attributes and Superclasses
The classdef block contains the class definition. The classdef line is where you
specify:

• Class attributes
• Superclasses

The classdef block contains the properties, methods, and events subblocks.

Class Attribute Syntax
Class attributes modify class behavior in some way. Assign values to class attributes only
when you want to change their default value.

No change to default attribute values:

classdef ClassName
 ...
end

One or more attribute values assigned:

classdef (attribute1 = value,...)
 ...
end

For example, the TextString class specifies that it cannot be used to derive subclasses:

classdef TextString (Sealed)
 ...
end

5 Class Definition—Syntax Reference

5-10

See “Class Attributes” on page 6-6 for a list of attributes and a discussion of the
behaviors they control.

Superclass Syntax
Derive a class from one or more other classes by specifying the superclasses on the
classdef line:

classdef ClassName < SuperclassName
 ...
end

For example, the LinkedList class inherits from classes called Array and handle:

classdef LinkedList < Array & handle
 ...
end

Local Functions in Class File
You can define only one class per file. However, you can add local functions to a file
containing the classdef block. Local functions are scoped to the classdef file and
have access to private and protected class members.

classdef ClassName
 ...
end
function localFunction
 ...
end

See Also

Related Examples
• “User-Defined Classes” on page 6-2
• “Design Subclass Constructors” on page 12-9
• “Local Functions”

 See Also

5-11

Class Properties
In this section...
“The Properties Block” on page 5-12
“Access to Property Values” on page 5-13

The Properties Block
Define class properties within a properties block:

classdef ClassName
 properties (PropertyAttributes)
 PropertyName size class {validation functions} = DefaultValue
 end
end

Property attributes apply to all properties defined within the block. To define properties
with different attributes, use multiple properties blocks. All property attributes have
default values. For a list of property attributes, see “Property Attributes” on page 8-9.

Restrict the size, class, and other aspects of values assigned to properties in the property
definition. For more information, see “Validate Property Values” on page 8-26.

Optionally assign default values to the property in the properties block. MATLAB
evaluates the assignment statement when the class is first referenced or when loading a
saved object. For more information, see “Property Definition” on page 8-17.

Note Evaluation of property default values occurs only when the value is first needed,
and only once when MATLAB first initializes the class. MATLAB does not reevaluate the
expression each time you create an instance of the class.

For more information on the evaluation of expressions that you assign as property default
values, see “When MATLAB Evaluates Expressions” on page 6-13.

Properties with Different Attributes

The following class defines three properties. Model and Color use default attribute
values, resulting in public read and write access. SerialNumber has read-only access by

5 Class Definition—Syntax Reference

5-12

object users. Assign the SerialNumber property value from a class member function,
such as the constructor or other class method.

classdef NewCar
 properties
 Model
 Color
 end
 properties (SetAccess = private)
 SerialNumber
 end
 methods
 ...
 end
end

Access to Property Values
Use dot notation to access property value.

A = NewCar

A =

 NewCar with properties:

 Model: []
 Color: []
 SerialNumber: []

Set the Model and Color properties:

A.Model = 'XGT7000';
A.Color = 'Red';

Add a constructor to the NewCar class to set property values:

classdef NewCar
 properties
 Model
 Color
 end
 properties (SetAccess = private)
 SerialNumber

 Class Properties

5-13

 end
 methods
 function obj = NewCar(model,color)
 obj.Model = model;
 obj.Color = color;
 obj.SerialNumber = datenum(datetime('now'));
 end
 end
end

A = NewCar('XGT7000','Red')

A =

 NewCar with properties:

 Model: 'XGT7000'
 Color: 'Red'
 SerialNumber: 7.362456078531134e+05

See Also

Related Examples
• “Ways to Use Properties” on page 8-2
• “Validate Property Values” on page 8-26

5 Class Definition—Syntax Reference

5-14

Methods and Functions
In this section...
“The Methods Block” on page 5-15
“Method Calling Syntax” on page 5-15
“Private Methods” on page 5-17
“More Detailed Information on Methods” on page 5-17
“Class-Related Functions” on page 5-17
“How to Overload Functions and Operators” on page 5-18
“Rules for Defining Methods in Separate Files” on page 5-18

The Methods Block
Define methods as MATLAB functions within a methods block, inside the classdef
block. The constructor method has the same name as the class and returns an initialized
object of the class. To create an object with property values that are unique to that
instance, assign values to properties in the class constructor. Terminate all method
functions with an end statement.
classdef ClassName
 properties
 PropertyName
 end
 methods
 function obj = ClassName(arg1,...)
 obj.PropertyName = arg1;
 ...
 end
 function ordinaryMethod(obj,arg1,...)
 ...
 end
 end
 methods (Static)
 function staticMethod(arg1,...)
 ...
 end
 end
end

Method Calling Syntax
MATLAB differs from languages like C++ and Java in that there is no special hidden class
object passed to all methods. You must pass an object of the class explicitly to the method.

 Methods and Functions

5-15

The leftmost argument does not need to be the class object, and the argument list can
have multiple objects. MATLAB dispatches to the method defined by the class of the
dominant argument. For more information, see “Method Invocation” on page 9-15.

Methods must be on the MATLAB path when called. For example, if you create an object
and then change your current folder to a folder from which the method file is not visible,
an error occurs when you call that method.

Always use case-sensitive method names in your MATLAB code.

Ordinary Methods

Call ordinary methods using MATLAB function syntax or dot notation. For example,
suppose that you have a class that defines ordinaryMethod. Pass an object of the
defining class and whatever arguments are required.

classdef MyClass
 methods
 function out = ordinaryMethod(obj,arg1)
 ...
 end
 end
end

Call ordinaryMethod using the object obj of the class and either syntax:

obj = MyClass;
r = ordinaryMethod(obj,arg1);
r = obj.ordinaryMethod(arg1);

Static Methods

Static methods do not require an object of the class. To call a static method, prefix the
method name with the class name so that MATLAB can determine what class defines the
method.

classdef MyClass
 methods (Static)
 function out = staticMethod(arg1)
 ...
 end
 end
end

5 Class Definition—Syntax Reference

5-16

Call staticMethod using the syntax classname.methodname:

r = MyClass.staticMethod(arg1);

See “Static Methods” on page 9-33 for information on methods that do not require
objects of their class.

Private Methods
Use the Access method attribute to create a private method. You do not need to use a
private folder.

See “Method Attributes” on page 9-5 for a list of method attributes.

More Detailed Information on Methods
“Methods”

Class-Related Functions
You can define functions that are not class methods in the file that contains the class
definition (classdef). Define local functions outside of the classdef - end block, but
in the same file as the class definition. Functions defined in classdef files work like local
functions. You can call these functions from anywhere in the same file, but they are not
visible outside of the file in which you define them.

Local functions in classdef files are useful for utility functions that you use only within
that file. These functions can take or return arguments that are instances of the class but,
it is not necessary, as in the case of ordinary methods. For example, the following code
defines myUtilityFcn outside the classdef block:

classdef MyClass
 properties
 PropName
 end
 methods
 function obj = MyClass(arg1)
 obj.PropName = arg1;
 end
 end
end % End of classdef

 Methods and Functions

5-17

function myUtilityFcn
 ...
end

You also can create package functions, which require the use of the package name when
calling these functions.

How to Overload Functions and Operators
Overload MATLAB functions for your class by defining a class method with the same
name as the function that you want to overload. MATLAB dispatches to the class method
when the function is called with an instance of the class.

You can overload MATLAB arithmetic, logical, relational, and indexing operators by
defining class methods with the appropriate names.

See the handle class for a list of operations defined for that class. All classes deriving
from handle inherit these methods.

Rules for Defining Methods in Separate Files
The following rules apply to methods defined in separate files:

• To specify attributes for a method defined in a separate file, declare this method in a
methods block in the classdef file. Specify the attribute values with the methods
block.

• The syntax declared in the methods block (if used) must match the method's
function line.

• The separate file must be in the class folder.
• The class constructor method must be defined in the classdef file. The constructor

cannot be in a separate file.
• Handle class delete methods must be defined in the classdef file. The delete

method cannot be in a separate file.

All functions that use dots in their names must be defined in the classdef file,
including:

• Converter methods that must use the package name as part of the class name
because the class is contained in packages

5 Class Definition—Syntax Reference

5-18

• Property set and get access methods

For more information on defining methods in separate files, see “Methods in Separate
Files” on page 9-11

See Also

More About
• “Methods in Class Design” on page 9-2

 See Also

5-19

Events and Listeners
In this section...
“Define and Trigger Events” on page 5-20
“Listen for Events” on page 5-20

Define and Trigger Events
To define an event, declare a name for the event in an events block. Trigger the event
using the handle class notify method. Only classes derived from the handle class can
define events.

For example, MyClass class:

• Subclasses handle
• Defines an event named StateChange
• Triggers the event using the inherited notify method in its upDateUI method.

classdef MyClass < handle
 events
 StateChange
 end
 ...
 methods
 function upDateUI(obj)
 ...
 notify(obj,'StateChange');
 end
 end
end

Listen for Events
Any number of objects can listen to the StateChange event. When notify executes,
MATLAB calls all registered listener callbacks. MATLAB passes the handle of the object
generating the event and event data to the callback functions. To create a listener, use the
addlistener method of the handle class.

addlistener(event_obj,'StateChange',@myCallback)

To control the lifecycle of the listener, use the event.listener constructor to create the
listener object.

5 Class Definition—Syntax Reference

5-20

See Also
event.hasListener | event.listener | event.proplistener

Related Examples
• “Overview Events and Listeners” on page 11-2
• “Events and Listeners Syntax” on page 11-22

 See Also

5-21

Attribute Specification

In this section...
“Attribute Syntax” on page 5-22
“Attribute Descriptions” on page 5-22
“Attribute Values” on page 5-23
“Simpler Syntax for true/false Attributes” on page 5-23

Attribute Syntax
Attributes modify the behavior of classes and class components (properties, methods, and
events). Attributes enable you to define useful behaviors without writing complicated
code. For example, you can create a read-only property by setting its SetAccess
attribute to private, but leaving its GetAccess attribute set to public:

properties (SetAccess = private)
 ScreenSize = getScreenSize
end

All class definition blocks (classdef, properties, methods, and events) support
specific attributes. All attributes have default values. Specify attribute values only in
cases where you want to change from the default value to another predefined value.

Note Specify the value of a particular attribute only once in any component block.

Attribute Descriptions
For lists of supported attributes, see:

• “Class Attributes” on page 6-6
• “Property Attributes” on page 8-9
• “Method Attributes” on page 9-5
• “Event Attributes” on page 11-19

5 Class Definition—Syntax Reference

5-22

Attribute Values
When you specify attribute values, those values affect all the components defined within
the defining block. For example, the following property definition blocks set the:

• AccountBalance property SetObservable attribute to true
• SSNumber and CreditCardNumber properties' Hidden attribute to true and

SetAccess attribute to private.

Defining properties with different attribute settings requires multiple properties
blocks.
properties (SetObservable = true)
 AccountBalance
end
properties (SetAccess = private, Hidden = true)
 SSNumber
 CreditCardNumber
end

Specified multiple attributes in a comma-separated list, as shown in the previous
example.

When specifying class attributes, place the attribute list directly after the classdef
keyword:

classdef (AttributeName = attributeValue) ClassName
 ...
end

Simpler Syntax for true/false Attributes
You can use a simpler syntax for attributes whose values are true or false — the
attribute name alone implies true and adding the not operator (~) to the name implies
false. For example:

methods (Static)
 ...
end

Is the same as:

methods (Static = true)
 ...
end

 Attribute Specification

5-23

Use the not operator before an attribute name to define it as false:

methods (~Static)
 ...
end

Is the same as:

methods (Static = false)
 ...
end

All attributes that take a logical value (that is, true or false) have a default value of
false. Therefore, specify an attribute only if you want to set it to true.

See Also

Related Examples
• “Evaluation of Expressions in Class Definitions” on page 6-10

5 Class Definition—Syntax Reference

5-24

Call Superclass Methods on Subclass Objects
In this section...
“Superclass Relation to Subclass” on page 5-25
“How to Call Superclass Methods” on page 5-25
“How to Call Superclass Constructor” on page 5-26

Superclass Relation to Subclass
Subclasses can override superclass methods to support the greater specialization defined
by the subclass. Because of the relationship that a subclass object is a superclass object,
it is often useful to call the superclass version of the method before executing the
specialized subclass code.

How to Call Superclass Methods
Subclass methods can call superclass methods if both methods have the same name.
From the subclass, reference the method name and superclass name with the @ symbol.

This diagram illustrates how to call the superMethod defined by MySuperClass.

Subclass object passed to

 the superclass method

superMethod@MySuperClass(obj,superMethodArguments)

Superclass name

 Superclass method

Arguments passed to the

superclass method

For example, a subclass can call a superclass disp method to implement the display of
the superclass part of the object. Then the subclass adds code to display the subclass part
of the object:

 Call Superclass Methods on Subclass Objects

5-25

classdef MySub < MySuperClass
 methods
 function disp(obj)
 disp@MySuperClass(obj)
 ...
 end
 end
end

How to Call Superclass Constructor
If you create a subclass object, MATLAB calls the superclass constructor to initialize the
superclass part of the subclass object. By default, MATLAB calls the superclass
constructor without arguments. If you want the superclass constructor called with
specific arguments, explicitly call the superclass constructor from the subclass
constructor. The call to the superclass constructor must come before any other references
to the object.

The syntax for calling the superclass constructor uses an @ symbol:

Object returned

from superclass

Object being

constructed

obj = obj@MySuperClass(SuperClassArguments);obj = obj@MySuperClass(SuperClassArguments);

Name of superclass

Superclass constructor

arugment list

In the following class, the MySub object is initialized by the MySuperClass constructor.
The superclass constructor constructs the MySuperClass part of the object using the
specified arguments.

classdef MySub < MySuperClass
 methods
 function obj = MySub(arg1,arg2,...)
 obj = obj@MySuperClass(SuperClassArguments);
 ...

5 Class Definition—Syntax Reference

5-26

 end
 end
end

See “Subclass Constructors” on page 9-27 for more information.

See Also

Related Examples
• “Modify Inherited Methods” on page 12-16

 See Also

5-27

Representative Class Code
In this section...
“Class Calculates Area” on page 5-28
“Description of Class Definition” on page 5-31

Class Calculates Area
The CircleArea class shows the syntax of a typical class definition. This class stores a
value for the radius of a circle and calculates the area of the circle when you request this
information. CircleArea also implements methods to graph, display, and create objects
of the class.

To use the CircleArea class, copy this code into a file named CircleArea.m and save
this file in a folder that is on the MATLAB path.

classdef CircleArea
 properties
 Radius
 end
 properties (Constant)
 P = pi
 end
 properties (Dependent)
 Area
 end
 methods
 function obj = CircleArea(r)
 if nargin > 0
 obj.Radius = r;
 end
 end
 function val = get.Area(obj)
 val = obj.P*obj.Radius^2;
 end
 function obj = set.Radius(obj,val)
 if val < 0
 error('Radius must be positive')
 end
 obj.Radius = val;
 end

5 Class Definition—Syntax Reference

5-28

 function plot(obj)
 r = obj.Radius;
 d = r*2;
 pos = [0 0 d d];
 curv = [1 1];
 rectangle('Position',pos,'Curvature',curv,...
 'FaceColor',[.9 .9 .9])
 line([0,r],[r,r])
 text(r/2,r+.5,['r = ',num2str(r)])
 title(['Area = ',num2str(obj.Area)])
 axis equal
 end
 function disp(obj)
 rad = obj.Radius;
 disp(['Circle with radius: ',num2str(rad)])
 end
 end
 methods (Static)
 function obj = createObj
 prompt = {'Enter the Radius'};
 dlgTitle = 'Radius';
 rad = inputdlg(prompt,dlgTitle);
 r = str2double(rad{:});
 obj = CircleArea(r);
 end
 end
end

Use the CircleArea Class

Create an object using the dialog box:

ca = CircleArea.createObj

Add a value for radius and click OK.

 Representative Class Code

5-29

Query the area of the defined circle:

ca.Area

ans =

 164.2202

Call the overloaded plot method:

plot(ca)

5 Class Definition—Syntax Reference

5-30

Description of Class Definition
Class definition code begins with the classdef keyword followed by the class name:
classdef CircleArea
Define the Radius property within the properties-end keywords. Use default
attributes:
 properties
 Radius
 end
Define the P property as Constant (“Define Class Properties with Constant Values” on
page 15-2). Call the pi function only once when class is initialized.
 properties (Constant)
 P = pi
 end
Define the Area property as Dependent because its value depends on the Radius
property.
 properties (Dependent)
 Area
 end
methods % Begin defining methods
The CircleArea class constructor method has the same name as the class and accepts
the value of the circle radius as an argument. This method also allows no input
arguments. (“Class Constructor Methods” on page 9-22)
 function obj = CircleArea(r)
 if nargin > 0
 obj.Radius = r;
 else
 obj.Radius = 0;
 end
 end
Because the Area property is Dependent, it does not store its value. The get.Area
method calculates the value of the Area property whenever it is queried. (“Set and Get
Methods for Dependent Properties” on page 8-64)
 function val = get.Area(obj)
 val = obj.P*obj.Radius^2;
 end

 Representative Class Code

5-31

The set.Radius method tests the value assigned to the Radius property to ensure that
the value is not less than zero. MATLAB calls set.Radius to assign a value to Radius.
(“Property Set Methods” on page 8-58.
 function obj = set.Radius(obj,val)
 if val < 0
 error('Radius must be positive')
 end
 obj.Radius = val;
 end
The CircleArea class overloads the plot function. The plot method uses the
rectangle function to create a circle and draws the radius. (“Overload Functions in
Class Definitions” on page 9-35
 function plot(obj)
 r = obj.Radius;
 d = r*2;
 pos = [0 0 d d];
 curv = [1 1];
 rectangle('Position',pos,'Curvature',curv)
 line([0,r],[r,r])
 text(r/2,r+.5,['r = ',num2str(r)])
 axis equal
 end
The CircleArea class overloads the disp function to change the way MATLAB displays
objects in the command window.
 function disp(obj)
 rad = obj.Radius;
 disp(['Circle with radius: ',num2str(rad)])
 end
end
methods (Static)
The CircleArea class defines a Static method that uses a dialog box to create an
object. (“Static Methods” on page 9-33
 function obj = createObj
 prompt = {'Enter the Radius'};
 dlgTitle = 'Radius';
 rad = inputdlg(prompt,dlgTitle);
 r = str2double(rad{:});
 obj = CircleArea(r);
 end

5 Class Definition—Syntax Reference

5-32

End of Static methods block and end of classdef block.
 end
end

 Representative Class Code

5-33

MATLAB Code Analyzer Warnings
In this section...
“Syntax Warnings and Property Names” on page 5-34
“Variable/Property Name Conflict Warnings” on page 5-34
“Exception to Variable/Property Name Rule” on page 5-35

Syntax Warnings and Property Names
The MATLAB Code Analyzer helps you optimize your code and avoid syntax errors while
you write code. It is useful to understand some of the rules that the Code Analyzer applies
in its analysis of class definition code. This understanding helps you avoid situations in
which MATLAB allows code that is undesirable.

Variable/Property Name Conflict Warnings
The Code Analyzer warns about the use of variable names in methods that match the
names of properties. For example, suppose that a class defines a property called
EmployeeName and in this class, there is a method that uses EmployeeName as a
variable:

properties
 EmployeeName
end
methods
 function someMethod(obj,n)
 EmployeeName = n;
 end
end

While the previous function is legal MATLAB code, it results in Code Analyzer warnings
for two reasons:

• The value of EmployeeName is never used
• EmployeeName is the name of a property that is used as a variable

If the function someMethod contained the following statement instead:

obj.EmployeeName = n;

5 Class Definition—Syntax Reference

5-34

The Code Analyzer generates no warnings.

If you change someMethod to:

function EN = someMethod(obj)
 EN = EmployeeName;
end

The Code Analyzer returns only one warning, suggesting that you might actually want to
refer to the EmployeeName property.

While this version of someMethod is legal MATLAB code, it is confusing to give a property
the same name as a function. Therefore, the Code Analyzer provides a warning
suggesting that you might have intended the statement to be:

EN = obj.EmployeeName;

Exception to Variable/Property Name Rule
Suppose that you define a method that returns a value of a property and uses the name of
the property for the output variable name. For example:

function EmployeeName = someMethod(obj)
 EmployeeName = obj.EmployeeName;
end

The Code Analyzer does not warn when a variable name is the same as a property name
when the variable is:

• An input or output variable
• A global or persistent variable

In these particular cases, the Code Analyzer does not warn you that you are using a
variable name that is also a property name. Therefore, a coding error like the following:

function EmployeeName = someMethod(obj)
 EmployeeName = EmployeeName; % Forgot to include obj.
end

does not trigger a warning from the Code Analyzer.

 MATLAB Code Analyzer Warnings

5-35

See Also

Related Examples
• “Use of Editor and Debugger with Classes” on page 5-49

5 Class Definition—Syntax Reference

5-36

Objects In Conditional Statements
In this section...
“Enable Use of Objects in Conditional Statements” on page 5-37
“How MATLAB Evaluates Switch Statements” on page 5-37
“How to Define the eq Method” on page 5-39
“Enumerations in Switch Statements” on page 5-41

Enable Use of Objects in Conditional Statements
Enable the use of objects in conditional statements by defining relational operators for
the class of the object. Classes that derive from the handle class inherit relational
operators. Value classes can implement operators to support the use of conditional
statements involving objects. For information on defining operators for your class, see
“Operator Overloading” on page 18-47.

How MATLAB Evaluates Switch Statements
MATLAB enables you to use objects in switch statements when the object’s class defines
an eq method. The eq method implements the == operation on objects of that class.

For objects, switch_expression == case_expression defines how MATLAB
evaluates switch and cases statements.

The values returned by the eq method must be of type logical. MATLAB does not
attempt to convert the output of eq to a logical value. Therefore, if your class design
requires the output of eq to be a nonlogical value, then you cannot use objects of that
class in switch statements.

Note You do not need to define eq methods for enumeration classes. See “Enumerations
in Switch Statements” on page 5-41.

Handle Objects in Switch Statements

All classes derived from the handle class inherit an eq method. The expression,

h1 == h2

 Objects In Conditional Statements

5-37

is true if h1 and h2 are handles for the same object.

For example, the BasicHandle class derives from handle:

classdef BasicHandle < handle
 properties
 Prop1
 end
 methods
 function obj = BasicHandle(val)
 if nargin > 0
 obj.Prop1 = val;
 end
 end
 end
end

Create a BasicHandle object and use it in a switch statement:

h1 = BasicHandle('Handle Object');
h2 = h1;

Here is the switch statement code:

switch h1
 case h2
 disp('h2 is selected')
 otherwise
 disp('h2 not selected')
end

The result is:

h2 is selected

Object Must Be Scalar

The switch statements work only with scalar objects. For example:

h1(1) = BasicHandle('Handle Object');
h1(2) = BasicHandle('Handle Object');
h1(3) = BasicHandle('Handle Object');
h2 = h1;

switch h1
 case h2

5 Class Definition—Syntax Reference

5-38

 disp('h2 is selected')
 otherwise
 disp('h2 not selected')
end

The result is:

SWITCH expression must be a scalar or string constant.

In this case, h1 is not scalar. Use isscalar to determine if an object is scalar before
entering a switch statement.

How to Define the eq Method
To enable the use of value-class objects in switch statements, implement an eq method
for the class. Use the eq method to determine what constitutes equality of two objects of
the class.

Behave like a Built-in Type

Some MATLAB functions also use the built-in == operator in their implementation.
Therefore, your implementation of eq should be replaceable with the built-in eq to enable
objects of your class work like built-in types in MATLAB code.

Design of eq

Implement the eq method to return a logical array representing the result of the ==
comparison.

For example, the SwitchOnVer class implements an eq method that returns true for the
== operation if the value of the Version property is the same for both objects. In
addition, eq works with arrays the same way as the built-in eq. For the following
expression:

obj1 == obj2

The eq method works as follows:

• If both obj1 and obj2 are scalar, eq returns a scalar value.
• If both obj1 and obj2 are nonscalar arrays, then these arrays must have the same

dimensions, and eq returns an array of the same size.

 Objects In Conditional Statements

5-39

• If one input argument is scalar and the other is a nonscalar array, then eq treats the
scalar object as if it is an array having the same dimensions as the nonscalar array.

Implementation of eq

Here is a class that implements an eq method. Ensure that your implementation contains
appropriate error checking for the intended use.

classdef SwitchOnVer
 properties
 Version
 end
 methods
 function obj = SwitchOnVer(ver)
 if nargin > 0
 obj.Version = ver;
 end
 end
 function bol = eq(obj1,obj2)
 if ~strcmp(class(obj1),class(obj2))
 error('Objects are not of the same class')
 end
 s1 = numel(obj1);
 s2 = numel(obj2);
 if s1 == s2
 bol = false(size(obj1));
 for k=1:s1
 if obj1(k).Version == obj2(k).Version
 bol(k) = true;
 else
 bol(k) = false;
 end
 end
 elseif s1 == 1
 bol = scalarExpEq(obj2,obj1);
 elseif s2 == 1
 bol = scalarExpEq(obj1,obj2);
 else
 error('Dimension missmatch')
 end
 function ret = scalarExpEq(ns,s)
 % ns is nonscalar array
 % s is scalar array
 ret = false(size(ns));

5 Class Definition—Syntax Reference

5-40

 n = numel(ns);
 for kk=1:n
 if ns(kk).Version == s.Version
 ret(kk) = true;
 else
 ret(kk) = false;
 end
 end
 end
 end
 end
end

Use SwitchOnVer objects in switch statements:

% Create known versions of objects
ov1 = SwitchOnVer(1.0);
ov2 = SwitchOnVer(2.0);
ov3 = SwitchOnVer(3.0);
...

...
if isscalar(objIn)
 switch(objIn)
 case ov1
 disp('This is version 1.0')
 case ov2
 disp('This is version 2.0')
 case ov3
 disp('This is version 3.0')
 otherwise
 disp('There is no version')
 end
 else
 error('Input object must be scalar')
 end

Enumerations in Switch Statements
MATLAB enables you to use enumerations in switch statements without requiring an
explicitly defined eq method for the enumeration class.

For example, the WeeklyPlanner class defines enumerations for five days of the week.
The switch/case statements in the todaySchedule static method dispatch on the

 Objects In Conditional Statements

5-41

enumeration member corresponding to the current day of the week. The date and
datestr functions return a char vector with the name of the current day.

classdef WeeklyPlanner
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
 methods (Static)
 function todaySchedule
 dayName = datestr(date,'dddd');
 dayEnum = WeeklyPlanner.(dayName);
 switch dayEnum
 case WeeklyPlanner.Monday
 disp('Monday schedule')
 case WeeklyPlanner.Tuesday
 disp('Tuesday schedule')
 case WeeklyPlanner.Wednesday
 disp('Wednesday schedule')
 case WeeklyPlanner.Thursday
 disp('Thursday schedule')
 case WeeklyPlanner.Friday
 disp('Friday schedule')
 end
 end
 end
end

Call todaySchedule to display today’s schedule:

WeeklyPlanner.todaySchedule

Enumerations Derived from Built-In Types

Enumeration classes that derived from built-in types inherit the superclass eq method.
For example, the FlowRate class derives from int32:

classdef FlowRate < int32
 enumeration
 Low (10)
 Medium (50)
 High (100)
 end
end

5 Class Definition—Syntax Reference

5-42

The switchEnum function switches on the input argument, which can be a FlowRate
enumeration value.

function switchEnum(inpt)
 switch inpt
 case 10
 disp('Flow = 10 cfm')
 case 50
 disp('Flow = 50 cfm')
 case 100
 disp('Flow = 100 cfm')
 end
end

Call switchEnum with an enumerated value:

switchEnum(FlowRate.Medium)

Flow = 50 cfm

 Objects In Conditional Statements

5-43

Operations on Objects
In this section...
“Object Operations” on page 5-44
“Help on Objects” on page 5-45
“Functions to Test Objects” on page 5-47
“Functions to Query Class Components” on page 5-47

Object Operations
A fundamental purpose of objects is to contain data and facilitate ways to manipulate that
data. Objects often define their own version of ordinary MATLAB functions that work with
the object. For example, you can create a timeseries object and pass the object to
plot:

ts = timeseries(rand(100,1),.01:.01:1,'Name','Data1');
plot(ts)

5 Class Definition—Syntax Reference

5-44

However, MATLAB does not call the standard plot function. MATLAB calls the
timeseries plot method, which can extract the data from the timeseries object and
create a customized graph.

Help on Objects
Suppose that you use an audioplayer object to play audio with MATLAB. To play audio,
load audio data into MATLAB and create an audioplayer:

load('handel','Fs','y')
chorus = audioplayer(y,Fs);

 Operations on Objects

5-45

The audioplayer function creates an object that you access using the object variable
chorus. MATLAB stores the audio source and other information in the object properties.

Here are the properties and values for the chorus instance of the audioplayer:

chorus

chorus =

Click the link to get the documentation on audioplayer objects.

The object’s documentation discusses the purpose of the object and describes the
properties and methods that you use when working with objects of that class.

You can also list the methods to see what operations you can perform. Pass the object to
the methods function to see the list:

methods(chorus)

Methods for class audioplayer:

audioplayer getdisp pause resume stop

5 Class Definition—Syntax Reference

5-46

delete horzcat play set vertcat
get isplaying playblocking setdisp

To play the audio, use the play method:

play(chorus)

Functions to Test Objects
These functions provide logical tests, which are useful when using objects in ordinary
functions.

Function Description
isa Determine whether an argument is an object of specific class.
isequal Determine if two objects are equal, which means both objects are of

the same class and size and their corresponding property values are
equal.

a == b (eq) Determine if handle variable a refers to the same object as handle
variable b.

isobject Determine whether input is a MATLAB object

Functions to Query Class Components
These functions provide information about object class components.

Function Description
class Return class of object.
enumeration Display class enumeration members and names.
events List event names defined by the class.
methods List methods implemented by the class.
methodsview List methods in separate window.
properties List class property names.

 Operations on Objects

5-47

See Also

Related Examples
• “Class Syntax Guide”

5 Class Definition—Syntax Reference

5-48

Use of Editor and Debugger with Classes
In this section...
“Write Class Code in the Editor” on page 5-49
“How to Refer to Class Files” on page 5-49
“How to Debug Class Files” on page 5-50

Write Class Code in the Editor
The MATLAB code editor provides an effective environment for class development. The
Code Analyzer, which is built into the editor, check code for problems and provides
information on fixing these problems. For information on editor use and features, see
edit.

How to Refer to Class Files
Define classes in files just like scripts and functions. To use the editor or debugger with a
class file, use the full class name. For example, suppose the file for a class, myclass.m is
in the following location:

+PackFld1/+PackFld2/@myclass/myclass.m

To open myclass.m in the MATLAB editor, you could reference the file using dot-
separated package names:

edit PackFld1.PackFld2.myclass

You could also use path notation:

edit +PackFld1/+PackFld2/@myclass/myclass

If myclass.m is not in a class folder, then enter:

edit +PackFld1/+PackFld2/myclass

To refer to functions inside a package folder, use dot or path separators:

edit PackFld1.PackFld2.packFunction
edit +PackFld1/+PackFld2/packFunction

To refer to a method defined in its own file inside a class folder, use:

 Use of Editor and Debugger with Classes

5-49

edit +PackFld1/+PackFld2/@myclass/myMethod

How to Debug Class Files
For debugging, dbstop enables you to set breakpoints in the class constructor by
specifying the fully qualified class file name. To set a breakpoint at a method defined in
the class file, specify the line number of the method with the dbstop command. For
example, if the method begins on line 14 in the classdef file, myclass.m, use this
command to put a breakpoint on the first executable line of the method.

dbstop in myclass at 14

See “Automatic Updates for Modified Classes” on page 5-51 for information about
clearing class after modification.

See Also
dbstop

Related Examples
• “MATLAB Code Analyzer Warnings” on page 5-34
• “Debug a MATLAB Program”

5 Class Definition—Syntax Reference

5-50

Automatic Updates for Modified Classes

In this section...
“When MATLAB Loads Class Definitions” on page 5-51
“Consequences of Automatic Update” on page 5-52
“What Happens When Class Definitions Change” on page 5-52
“Actions That Do Not Trigger Updates” on page 5-53
“Multiple Updates to Class Definitions” on page 5-53
“Object Validity with Deleted Class File” on page 5-53
“When Updates Are Not Possible” on page 5-53
“Potential Consequences of Class Updates” on page 5-54
“Updates to Class Attributes” on page 5-54
“Updates to Property Definitions” on page 5-55
“Updates to Method Definitions” on page 5-56
“Updates to Event Definitions” on page 5-57

When MATLAB Loads Class Definitions
MATLAB loads a class definition:

• The first time the class is referenced, such as creating an instance, accessing a
constant property, or calling a static method of the class.

• Whenever the definition of a loaded class changes and MATLAB returns to the
command prompt.

• When you change the MATLAB path and cause a different definition of the class to be
used. The change takes effect after MATLAB returns to the command prompt.

• Whenever you access the class metadata.

MATLAB allows only one definition for a class to exist at any time. Therefore, MATLAB
attempts to update all existing objects of a class automatically to conform to the new class
definition. You do not need to call clear classes to remove existing objects when you
change their defining class.

 Automatic Updates for Modified Classes

5-51

Note Using an editor other than the MATLAB editor or using MATLAB Online™ can
result in delays to automatic updating.

Consequences of Automatic Update
MATLAB follows a set of basic rules when updating existing objects. An automatic update
can result in:

• Existing objects being updated to the new class definition.
• An error if MATLAB cannot convert the objects to the new class definition or if there is

an error in the class definition itself.

Here is an example of what happens when you create an instance of a concrete class edit
the class definition to make the class abstract.

a = MyClass;
% Edit MyClass to make it Abstract

a

Error using MyClass/display
Cannot update object because the class 'MyClass' is now abstract.

Note MATLAB does not update metaclass instances when you change the definition of a
class. You must get new metaclass data after updating a class definition.

What Happens When Class Definitions Change
MATLAB updates existing objects when a class definition changes, including the following
situations:

• Value change to handle — Existing objects become independent handles referring to
different objects.

• Enumeration member added — Existing objects preserve the enumeration members
they had previously, even if the underlying values have changed.

• Enumeration member removed — Existing objects that are not using the removed
member have the same enumeration members that they had previously. Existing
objects that use the removed member replace the removed member with the default
member of the enumeration.

5 Class Definition—Syntax Reference

5-52

• Enumeration block removed — Enumeration members are taken out of use.
• Superclass definition changed — Changes applied to all subclasses in the hierarchy of

that superclass.
• Superclass added or removed — Change of superclass applied to all existing objects.

Actions That Do Not Trigger Updates
These actions do not update existing objects:

• Calling the class function on an out-of-date object
• Assigning an out-of-date object to a variable
• Calling a method that does not access class data
• Changing property validation in the class definition (“Validate Property Values” on

page 8-26)

Objects do not update until referenced in a way that exposes the change, such as invoking
the object display or assigning to a property.

Multiple Updates to Class Definitions
Updates do not occur incrementally. Updates conform to the latest version of the class.

Object Validity with Deleted Class File
Deleting a class definition file does not make instances of that class invalid. However, you
cannot call methods on existing objects of that class.

When Updates Are Not Possible
Some class updates result in an invalid class definition. In these cases, objects do not
update until the error is resolved:

• Adding a superclass can result in a property or method being defined twice.
• Changing a superclass to be Sealed when objects of one of its subclasses exists

results in an invalid subclass definition.

 Automatic Updates for Modified Classes

5-53

Some class updates cause situations in which MATLAB cannot update existing objects to
conform to a modified class definition. These cases result in errors until you delete the
objects:

• Adding an enumeration block to a non-enumeration class
• Redefining a class to be abstract
• Removing a class from a heterogeneous hierarchy that results in there being no

default object to replace existing objects in a heterogeneous array
• Updating a class to restrict array formation behavior, such as overloading array

indexing and concatenation.
• Inheriting a subsref, subsasgn, cat, vertcat, or horzcat method
• Redefining a handle class to be a value class.

Potential Consequences of Class Updates
• Following an update, existing objects can be incompatible with the new class
definition. For example, a newly added property can require execution of the
constructor to be valid.

• Removing or renaming properties can lose the data held in the property. For example,
if a property holds the only reference to another object and you remove that property
from the class, the MATLAB deletes the object because there are no longer any
references to it.

• Removing a class from a heterogeneous class hierarchy can result in invalid
heterogeneous array elements. In this case, the default object for the heterogeneous
hierarchy replaces these array elements.

Updates to Class Attributes
Changing class attributes can change existing object behavior or make the objects invalid.
MATLAB returns an error when you access the invalid objects.

Change Effect
Make Abstract = true Accessing existing objects returns an error.
Change AllowedSubclasses Newly created objects can inherit from different

superclasses than existing objects.

5 Class Definition—Syntax Reference

5-54

Change Effect
Change ConstructOnLoad Loading classes obeys the current value of

ConstructOnLoad.
Change HandleCompatible Newly created objects can have different class hierarchy

than existing objects.
Change Hidden Appearance of class in list of superclasses and access by

help function can change
Change InferiorClasses Method dispatching for existing objects can change.
Make Sealed = true Existing subclass objects return errors when accessed.

Updates to Property Definitions
When you change the definition of class properties, MATLAB applies the changes to
existing objects of the class.

Change Effect
Add property Adds the new property to existing objects of the class.

Sets the property values to the default value (which is
[] if the class definition does not specify a default).

Remove property Removes the property from existing objects of the class.
Attempts to access the removed property fail.

Change property default value Does not apply the new default value to existing objects
of the class.

Move property between
subclass and superclass

Does not apply different default value when property
definition moves between superclass and subclass.

 Automatic Updates for Modified Classes

5-55

Change Effect
Change property attribute
value

Applies changes to existing objects of the class.

Some cases require transitional steps:

• Abstract — Existing objects of a class that becomes
abstract cannot be updated. Delete these objects.

• Access — Changes to the public, protected, or
private property access settings affect access to
existing objects.

Changes to the access lists do not change existing
objects. However, if you add classes to the access
list, instances of those classes have access to this
property. If you remove classes from the access list,
objects of those classes no longer have access to this
property.

• Dependent — If changed to true, existing objects
no longer store property values. If you want to query
the property value, add a property get method for
the property.

• Transient — If changed to true, objects already
saved, reload this property value. If changed to
false, objects already saved reload this property
using the default value.

Updates to Method Definitions
When you change the definition of class methods, MATLAB changes the affected class
member in existing objects as follows.

Change Effect
Add method You can call the new method on existing objects of the

class.
Modify method Modifications are available to existing objects.
Remove method You can on longer call deleted method on existing

objects.

5 Class Definition—Syntax Reference

5-56

Change Effect
Change method attribute value Apply changes to existing objects of the class.

Some cases require transitional steps:

• Abstract — Existing objects of a class that becomes
abstract cannot be updated. Delete these objects.

• Access — Changes to method public, protected,
or private access settings affect access to existing
objects.

Changes to the access lists do not change existing
instances. However, if you add classes to the access
list, instances of those classes have access to this
method. If you remove classes from the access list,
objects of those classes no longer have access to this
method.

• Sealed — If changed to true and existing
subclasses already have defined the method,
MATLAB returns an error because the new class
definition cannot be applied to existing subclasses.

Updates to Event Definitions
Change Effect
Add event Existing objects of the class support the new event.
Change event name New event name is visible to existing objects of the

class. MATLAB:

• Does not update existing metaclass objects
• Does update newly acquired metaclass objects
• Does not update listeners to use new event name

Remove event Existing objects no longer support deleted event.

 Automatic Updates for Modified Classes

5-57

Change Effect
Change event attribute value Apply changes to existing objects of the class.

Some cases require transitional steps:

• ListenAccess — Changes to event public,
protected, or private listen access settings affect
access to existing objects.

Changes to the access list do not change existing
objects. However, if you add classes to the access
list, objects of those classes can create listeners for
this event. If you remove classes from the access list,
objects of those classes are not allowed to create
listeners for this event.

• NotifyAccess — Changes to event public,
protected, or private notify access settings affect
access to existing objects.

Changes to the access list do not change existing
objects. However, if you add classes to the access
list, instances of those classes can trigger this event.
If you remove classes, objects of those classes are
not able to trigger this event.

See Also

Related Examples
• “Use of Editor and Debugger with Classes” on page 5-49

5 Class Definition—Syntax Reference

5-58

Compatibility with Previous Versions
In this section...
“New Class-Definition Syntax Introduced with MATLAB Software Version 7.6” on page 5-
59
“Changes to Class Constructors” on page 5-60
“New Features Introduced with Version 7.6” on page 5-61
“Examples of Old and New” on page 5-61

New Class-Definition Syntax Introduced with MATLAB
Software Version 7.6
MATLAB software Version 7.6 introduces a new syntax for defining classes. This new
syntax includes:

• The classdef keyword begins a block of class-definitions code. An end statement
terminates the class definition.

• Within the classdef code block, properties, methods, and events are also
keywords delineating where you define the respective class members.

Cannot Mix Class Hierarchy

It is not possible to create class hierarchies that mix classes defined before Version 7.6
and current class definitions that use classdef. Therefore, you cannot subclass an old
class to create a version of the new class.

Only One “@” Class Folder Per Class

For classes defined using the new classdef keyword, a class folder shadows all class
folders that occur after it on the MATLAB path. Classes defined in class folders must
locate all class files in that single folder. However, classes defined in class folders
continue to take precedence over functions and scripts having the same name, even those
functions and scripts that come before them on the path.

Private Methods

You do not need to define private folders in class folders in Version 7.6. You can set the
method's Access attribute to private instead.

 Compatibility with Previous Versions

5-59

Changes to Class Constructors
Class constructor methods have two major differences. Class constructors:

• Do not use the class function.
• Must call the superclass constructor only if you want to pass arguments to its

constructor. Otherwise, no call to the superclass constructor is necessary.

Example of Old and New Syntax

Compare the following two Stock constructor methods. The Stock class is a subclass of
the Asset class, which requires arguments passed to its constructor.

Constructor Function Before Version 7.6

 function s = Stock(description,num_shares,share_price)
 s.NumShares = num_shares;
 s.SharePrice = share_price;
% Construct Asset object
 a = Asset(description,'stock',share_price*num_shares);
% Use the class function to define the stock object
 s = class(s,'Stock',a);

Write the same Stock class constructor as shown here. Define the inheritance on the
classdef line and define the constructor within a methods block.

Constructor Function for Version 7.6

classdef Stock < Asset
 ...
 methods

 function s = Stock(description,num_shares,share_price)
% Call superclass constructor to pass arguments
 s = s@Asset(description,'stock',share_price*num_shares);
 s.NumShares = num_shares;
 s.SharePrice = share_price;
 end % End of function

 end % End of methods block
end % End of classdef block

5 Class Definition—Syntax Reference

5-60

New Features Introduced with Version 7.6
• Properties: “Ways to Use Properties” on page 8-2
• Handle classes: “Comparison of Handle and Value Classes” on page 7-2
• Events and listeners: “Event and Listener Concepts” on page 11-14
• Class member attributes: “Attribute Specification” on page 5-22
• Abstract classes: “Abstract Classes” on page 12-91
• Dynamic properties: “Dynamic Properties — Adding Properties to an Instance” on

page 8-71
• Ability to subclass MATLAB built-in classes: “Design Subclass Constructors” on page

12-9
• Packages for scoping functions and classes: “Packages Create Namespaces” on page

6-25. MATLAB does not support packages for classes created before MATLAB Version
7.6 (that is, classes that do not use classdef).

• The JIT/Accelerator supports objects defined only by classes using classdef.

Examples of Old and New
The MATLAB Version 7.6 implementation of classes uses different syntax from previous
releases. However, classes written in previous versions continue to work. Most of the
code you use to implement the methods is likely to remain the same, except where you
take advantage of new features.

The following sections reimplement examples using the latest syntax. The original
MATLAB Classes and Objects documentation implemented these same examples and
provide a comparison of old and new syntax.

“Representing Polynomials with Classes” on page 20-2

“A Class Hierarchy for Heterogeneous Arrays” on page 21-2

 Compatibility with Previous Versions

5-61

Comparison of MATLAB and Other OO Languages

In this section...
“Some Differences from C++ and Java Code” on page 5-62
“Object Modification” on page 5-63
“Static Properties” on page 5-67
“Common Object-Oriented Techniques” on page 5-68

Some Differences from C++ and Java Code
The MATLAB programming language differs from other object-oriented languages, such
as C++ or Java in some important ways.

Public Properties

Unlike fields in C++ or the Java language, you can use MATLAB properties to define a
public interface separate from the implementation of data storage. You can provide public
access to properties because you can define set and get access methods that execute
automatically when assigning or querying property values. For example, the following
statement:

myobj.Material = 'plastic';

assigns the char vector plastic to the Material property of myobj. Before making the
actual assignment, myobj executes a method called set.Material (assuming the class
of myobj defines this method), which can perform any necessary operations. See
“Property Access Methods” on page 8-52 for more information on property access
methods.

You can also control access to properties by setting attributes, which enable public,
protected , or private access. See “Property Attributes” on page 8-9 for a full list of
property attributes.

No Implicit Parameters

In some languages, one object parameter to a method is always implicit. In MATLAB,
objects are explicit parameters to the methods that act on them.

5 Class Definition—Syntax Reference

5-62

Dispatching

In MATLAB classes, method dispatching is not based on method signature, as it is in C++
and Java code. When the argument list contains objects of equal precedence, MATLAB
uses the leftmost object to select the method to call.

However, if the class of an argument is superior to the class of the other arguments,
MATLAB dispatches to the method of the superior argument, regardless of its position
within the argument list.

See “Class Precedence” on page 6-23 for more information.

Calling Superclass Method

• In C++, you call a superclass method using the scoping operator:
superclass::method

• In Java code, you use: superclass.method

The equivalent MATLAB operation is method@superclass.

Other Differences

In MATLAB classes, there is no equivalent to C++ templates or Java generics. However,
MATLAB is weakly typed and it is possible to write functions and classes that work with
different types of data.

MATLAB classes do not support overloading functions using different signatures for the
same function name.

Object Modification
MATLAB classes can define public properties, which you can modify by explicitly
assigning values to those properties on a given instance of the class. However, only
classes derived from the handle class exhibit reference behavior. Modifying a property
value on an instance of a value classes (classes not derived from handle), changes the
value only within the context in which the modification is made.

The sections that follow describe this behavior in more detail.

 Comparison of MATLAB and Other OO Languages

5-63

Objects Passed to Functions

MATLAB passes all variables by value. When you pass an object to a function, MATLAB
copies the value from the caller into the parameter variable in the called function.

However, MATLAB supports two kinds of classes that behave differently when copied:

• Handle classes — a handle class instance variable refers to an object. A copy of a
handle class instance variable refers to the same object as the original variable. If a
function modifies a handle object passed as an input argument, the modification
affects the object referenced by both the original and copied handles.

• Value classes — the property data in an instance of a value class are independent of
the property data in copies of that instance (although, a value class property could
contain a handle). A function can modify a value object that is passed as an input
argument, but this modification does not affect the original object.

See “Comparison of Handle and Value Classes” on page 7-2 for more information on the
behavior and use of both kinds of classes.
Passing Value Objects

When you pass a value object to a function, the function creates a local copy of the
argument variable. The function can modify only the copy. If you want to modify the
original object, return the modified object and assign it to the original variable name. For
example, consider the value class, SimpleClass :

classdef SimpleClass
 properties
 Color
 end
 methods
 function obj = SimpleClass(c)
 if nargin > 0
 obj.Color = c;
 end
 end
 end
end

Create an instance of SimpleClass, assigning a value of red to its Color property:

obj = SimpleClass('red');

Pass the object to the function g, which assigns blue to the Color property:

5 Class Definition—Syntax Reference

5-64

function y = g(x)
 x.Color = 'blue';
 y = x;
end

y = g(obj);

The function g modifies its copy of the input object and returns that copy, but does not
change the original object.

y.Color

ans =

 blue

obj.Color

ans =

 red

If the function g did not return a value, the modification of the object Color property
would have occurred only on the copy of obj within the function workspace. This copy
would have gone out of scope when the function execution ended.

Overwriting the original variable actually replaces it with a new object:

obj = g(obj);

Passing Handle Objects

When you pass a handle to a function, the function makes a copy of the handle variable,
just like when passing a value object. However, because a copy of a handle object refers
to the same object as the original handle, the function can modify the object without
having to return the modified object.

For example, suppose that you modify the SimpleClass class definition to make a class
derived from the handle class:

classdef SimpleHandleClass < handle
 properties
 Color
 end
 methods

 Comparison of MATLAB and Other OO Languages

5-65

 function obj = SimpleHandleClass(c)
 if nargin > 0
 obj.Color = c;
 end
 end
 end
end

Create an instance of SimpleHandleClass, assigning a value of red to its Color
property:

obj = SimpleHandleClass('red');

Pass the object to the function g, which assigns blue to the Color property:

y = g(obj);

The function g sets the Color property of the object referred to by both the returned
handle and the original handle:

y.Color

ans =

blue

obj.Color

ans =

blue

The variables y and obj refer to the same object:

y.Color = 'yellow';
obj.Color

ans =

yellow

The function g modified the object referred to by the input argument (obj) and returned
a handle to that object in y.

5 Class Definition—Syntax Reference

5-66

MATLAB Passes Handles by Value

A handle variable is a reference to an object. MATLAB passes this reference by value.

Handles do not behave like references in C++. If you pass an object handle to a function
and that function assigns a different object to that handle variable, the variable in the
caller is not affected. For example, suppose you define a function g2:

function y = g2(x)
 x = SimpleHandleClass('green');
 y = x;
end

Pass a handle object to g2:

obj = SimpleHandleClass('red');
y = g2(obj);
y.Color

ans =

green

obj.Color

ans =

red

The function overwrites the handle passed in as an argument, but does not overwrite the
object referred to by the handle. The original handle obj still references the original
object.

Static Properties
In MATLAB, classes can define constant properties, but not "static" properties in the
sense of other languages like C++. You cannot change constant properties from the initial
value specified in the class definition.

MATLAB has long-standing rules that variables always take precedence over the names of
functions and classes. Assignment statements introduce a variable if one does not exist.

Expressions of this form

 Comparison of MATLAB and Other OO Languages

5-67

A.B = C

Introduce a new variable, A, that is a struct containing a field B whose value is C. If A.B
= C could refer to a static property of class A, then class A would take precedence over
variable A.

This behavior would be a significant incompatibility with prior releases of MATLAB. For
example, the introduction of a class named A on the MATLAB path could change the
meaning of an assignment statement like A.B = C inside a .m code file.

In other languages, classes rarely use static data, except as private data within the class
or as public constants. In MATLAB, you can use constant properties the same way you use
public final static fields in Java. To use data that is internal to a class in MATLAB,
create persistent variables in private or protected methods or local functions used
privately by the class.

Avoid static data in MATLAB. If a class has static data, using the same class in multiple
applications causes conflicts among applications. Conflicts are less of an issue in some
other languages. These languages compile applications into executables that run in
different processes. Each process has its own copy of the class static data. MATLAB,
frequently runs many different applications in the same process and environment with a
single copy of each class.

For ways to define and use static data in MATLAB, see “Static Data” on page 4-2.

Common Object-Oriented Techniques
This table provides links to sections that discuss object-oriented techniques commonly
used by other object-oriented languages.

Technique How to Use in MATLAB
Operator overloading “Operator Overloading” on page 18-47
Multiple inheritance “Subclassing Multiple Classes” on page 12-22
Subclassing “Design Subclass Constructors” on page 12-9
Destructor “Handle Class Destructor” on page 7-16
Data member scoping “Property Attributes” on page 8-9
Packages (scoping
classes)

“Packages Create Namespaces” on page 6-25

5 Class Definition—Syntax Reference

5-68

Technique How to Use in MATLAB
Named constants See “Define Class Properties with Constant Values” on page

15-2 and “Named Values” on page 14-2
Enumerations “Define Enumeration Classes” on page 14-5
Static methods “Static Methods” on page 9-33
Static properties Not supported. See persistent variables. For the

equivalent of Java static final or C++ static const
properties, use Constant properties. See “Define Class
Properties with Constant Values” on page 15-2

For mutable static data, see “Static Data” on page 4-2
Constructor “Class Constructor Methods” on page 9-22
Copy constructor No direct equivalent
Reference/reference
classes

“Comparison of Handle and Value Classes” on page 7-2

Abstract class/Interface “Abstract Classes” on page 12-91
Garbage collection “Object Lifecycle” on page 7-21
Instance properties “Dynamic Properties — Adding Properties to an Instance” on

page 8-71
Importing classes “Import Classes” on page 6-31
Events and Listeners “Event and Listener Concepts” on page 11-14

 Comparison of MATLAB and Other OO Languages

5-69

Defining and Organizing Classes

• “User-Defined Classes” on page 6-2
• “Class Attributes” on page 6-6
• “Evaluation of Expressions in Class Definitions” on page 6-10
• “Folders Containing Class Definitions” on page 6-17
• “Class Precedence” on page 6-23
• “Packages Create Namespaces” on page 6-25
• “Import Classes” on page 6-31

6

User-Defined Classes
In this section...
“What Is a Class Definition” on page 6-2
“Attributes for Class Members” on page 6-2
“Kinds of Classes” on page 6-3
“Constructing Objects” on page 6-3
“Class Hierarchies” on page 6-3
“classdef Syntax” on page 6-3
“Class Code” on page 6-4

What Is a Class Definition
A MATLAB class definition is a template whose purpose is to provide a description of all
the elements that are common to all instances of the class. Class members are the
properties, methods, and events that define the class.

Define MATLAB classes in code blocks, with subblocks delineating the definitions of
various class members. For syntax information on these blocks, see “Class Components”
on page 5-5.

Attributes for Class Members
Attributes modify the behavior of classes and the members defined in the class-definition
block. For example, you can specify that methods are static or that properties are private.
The following sections describe these attributes:

• “Class Attributes” on page 6-6
• “Method Attributes” on page 9-5
• “Property Attributes” on page 8-9
• “Event Attributes” on page 11-19

Class definitions can provide information, such as inheritance relationships or the names
of class members without actually constructing the class. See “Class Metadata” on page
17-2.

6 Defining and Organizing Classes

6-2

See “Specifying Attributes” on page 6-8 for more on attribute syntax.

Kinds of Classes
There are two kinds of MATLAB classes—handle classes and value classes.

• Value classes represent independent values. Value objects contain the object data and
do not share this data with copies of the object. MATLAB numeric types are value
classes. Values objects passed to and modified by functions must return a modified
object to the caller.

• Handle classes create objects that reference the object data. Copies of the instance
variable refer to the same object. Handle objects passed to and modified by functions
affect the object in the caller’s workspace without returning the object.

For more information, see “Comparison of Handle and Value Classes” on page 7-2.

Constructing Objects
For information on class constructors, see “Class Constructor Methods” on page 9-22.

For information on creating arrays of objects, see “Construct Object Arrays” on page 10-
2.

Class Hierarchies
For more information on how to define class hierarchies, see “Hierarchies of Classes —
Concepts” on page 12-2.

classdef Syntax
Class definitions are blocks of code that are delineated by the classdef keyword at the
beginning and the end keyword at the end. Files can contain only one class definition.

The following diagram shows the syntax of a classdef block. Only comments and blank
lines can precede the classdef keyword.

 User-Defined Classes

6-3

Class attribute

classdef block

classdef keyword begins definition block.

end keyword terminates definition block.

classdef (ConstructOnLoad = true) PositiveIntegers < Integers & Positives

...

end

Attribute value

(logical true)

Class name Super classes

Class Code
Here is a simple class definition with one property and a constructor method that sets the
value of the property when there is an input argument supplied.

classdef MyClass
 properties
 Prop
 end
 methods
 function obj = MyClass(val)
 if nargin > 0
 obj.Prop = val;
 end
 end
 end
end

To create an object of MyClass, save the class definition in a .m file having the same
name as the class and call the constructor with any necessary arguments:

d = datestr(now);
o = MyClass(d);

6 Defining and Organizing Classes

6-4

Use dot notation to access the property value:

o.Prop

ans =

10-Nov-2005 10:38:14

The constructor should support a no argument syntax so MATLAB can create default
objects. For more information, see “No Input Argument Constructor Requirement” on
page 9-26.

For more information on the components of a class definition, see “Class Components” on
page 5-5

See Also

Related Examples
• “Create a Simple Class” on page 2-2
• “Developing Classes — Typical Workflow” on page 3-8
• “Representing Structured Data with Classes” on page 3-19

 See Also

6-5

Class Attributes
In this section...
“Specifying Class Attributes” on page 6-6
“Specifying Attributes” on page 6-8
“Class-Specific Attributes” on page 6-9

Specifying Class Attributes
All classes support the attributes listed in the following table. Attributes enable you to
modify the behavior of class. Attribute values apply to the class defined within the
classdef block.

classdef (Attribute1 = value1, Attribute2 = value2,...) ClassName
 ...
end

For more information on attribute syntax, see “Attribute Specification” on page 5-22.

6 Defining and Organizing Classes

6-6

Class Attributes

Attribute Name Class Description
Abstract logical

(default =
false)

If specified as true, this class is an abstract class (cannot be
instantiated).

See “Abstract Classes” on page 12-91 for more information.
AllowedSubclasse
s

meta.class
object or cell
array of
meta.class
objects

List classes that can subclass this class. Specify subclasses
as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell array,

{}, is the same as a Sealed class (no subclasses).

Specify meta.class objects using the ?ClassName syntax
only.

See “Specify Allowed Subclasses” on page 12-25 for more
information.

ConstructOnLoad logical

(default =
false)

If true, MATLAB calls the class constructor when loading an
object from a MAT-file. Therefore, implement the constructor
so it can be called with no arguments without producing an
error.

See “Initialize Objects When Loading” on page 13-30 for
more information.

HandleCompatible logical

(default =
false) for
value classes

If specified as true, this class can be used as a superclass
for handle classes. All handle classes are
HandleCompatible by definition. See “Handle Compatible
Classes” on page 12-39 for more information.

Hidden logical

(default =
false)

If true, this class does not appear in the output of the
superclasses or help functions.

 Class Attributes

6-7

Attribute Name Class Description
InferiorClasses meta.class

object or cell
array of
meta.class
objects

Use this attribute to establish a precedence relationship
among classes. Specify a cell array of meta.class objects
using the ? operator.

The fundamental classes are always inferior to user-defined
classes and do not show up in this list.

See “Class Precedence” on page 6-23 and “Dominant
Argument in Overloaded Graphics Functions” on page 9-50.

Sealed logical

(default =
false)

If true, this class cannot be subclassed.

Framework attributes Classes that use certain framework base classes have framework-specific
attributes. See the documentation for the specific base class you are using
for information on these attributes.

Specifying Attributes
Attributes are specified for class members in the classdef, properties, methods, and
events definition blocks. The particular attribute setting applies to all members defined
within that particular block. You can use multiple properties, methods, and events
definition blocks to apply different attribute setting to different class members.

Superclass Attribute Values Are Not Inherited

Class attributes settings are not inherited, so superclass attribute values do not affect
subclasses.

Attribute Syntax

Specify class attribute values in parentheses, separating each attribute name/attribute
value pair with a comma. The attribute list always follows the classdef or class member
keyword, as shown:
classdef (attribute-name = expression, ...) ClassName

 properties (attribute-name = expression, ...)
 ...
 end

6 Defining and Organizing Classes

6-8

 methods (attribute-name = expression, ...)
 ...
 end
 events (attribute-name = expression, ...)
 ...
 end
end

Class-Specific Attributes
Some MATLAB classes define additional attributes that you can use only with the class
hierarchies that define these attributes. See the specific documentation for the classes
you are using for information on any additional attributes supported by those classes.

See Also

More About
• “Expressions in Attribute Specifications” on page 6-11

 See Also

6-9

Evaluation of Expressions in Class Definitions
In this section...
“Why Use Expressions” on page 6-10
“Where to Use Expressions in Class Definitions” on page 6-10
“How MATLAB Evaluates Expressions” on page 6-13
“When MATLAB Evaluates Expressions” on page 6-13
“Expression Evaluation in Handle and Value Classes” on page 6-14

Why Use Expressions
An expression used in a class definition can be any valid MATLAB statement that
evaluates to a single array. Use expressions to define property default values and in
attribute specifications. Expressions are useful to derive values in terms of other values.
For example, suppose that you want to define a constant property with the full precision
value of 2π. You can assign the property the value returned by the expression 2*pi.
MATLAB evaluates the function when first loading the class.

For information on assign property default values and attribute values, see the following
topics:

• “Property Definition” on page 8-17
• “Attribute Specification” on page 5-22

Where to Use Expressions in Class Definitions
Here are some examples of expressions used in a class definition:

classdef MyClass
 % Some attributes are set to logical values
 properties (Constant = true)
 CnstProp = 2*pi
 end
 properties
 % Static method of this class
 Prop1 = MyClass.setupAccount
 % Constant property from this class
 Prop2 = MyClass.CnstProp

6 Defining and Organizing Classes

6-10

 % Function that returns a value
 Prop3 = datestr(now)
 % A class constructor
 Prop4 = AccountManager
 end
 methods (Static)
 function accNum = setupAccount
 accNum = randi(9,[1,12]);
 end
 end
end

MATLAB does not call property set methods when assigning the result of default value
expressions to properties. (See “Property Access Methods” on page 8-52 for information
about these special methods.)

Enumerations that derived from MATLAB types can use expression to assign a value:

classdef FlowRate < int32
 enumeration
 Low (10)
 Medium (FlowRate.Low*5)
 High (FlowRate.Low*10)
 end
end

MATLAB evaluates these expressions only once when enumeration members are first
accessed.

Expressions in Attribute Specifications

For attributes values that are logical true or false, class definitions can specify
attribute values using expressions. For example, this assignment makes MyClass sealed
(cannot be subclassed) for versions of MATLAB before R2014b (verLessThan)

classdef (Sealed = verLessThan('matlab','8.4')) MyClass

The expression on the right side of the equal sign (=) must evaluate to true or false.
You cannot use any definitions from the class file in this expression, including any
constant properties, static methods, and local functions.

While you can use conditional expression to set attribute values, doing so can cause the
class definition to change based on external conditions. Ensure that this behavior is
consistent with your class design.

 Evaluation of Expressions in Class Definitions

6-11

Note The AllowedSubclasses and the InferiorClasses attributes require an
explicit specification of a cell array of meta.class objects as their values. You cannot
use expressions to return these values.

See “Attribute Specification” on page 5-22 for more information on attribute syntax.

Expressions That Specify Default Property Values

Property definitions allow you to specify default values for properties using any
expression that has no reference to variables. For example, VectorAngle defines a
constant property (Rad2Deg) and uses it in an expression that defines the default value of
another property (Angle). The default value expression also uses a static method
(getAngle) defined by the class:

classdef VectorAngle
 properties (Constant)
 Rad2Deg = 180/pi
 end
 properties
 Angle = VectorAngle.Rad2Deg*VectorAngle.getAngle([1 0],[0 1])
 end
 methods
 function obj = VectorAngle(vx,vy)
 obj.Angle = VectorAngle.getAngle(vx,vy);
 end
 end
 methods (Static)
 function r = getAngle(vx,vy)
 % Calculate angle between 2D vectors
 cr = vx(1)*vy(1) + vx(2)*vy(2)/sqrt(vx(1)^2 + vx(2)^2) * ...
 sqrt(vy(1)^2 + vy(2)^2);
 r = acos(cr);
 end
 end
end

You cannot use the input variables to the constructor to define the default value of the
Angle property. For example, this definition for the Angle property is not valid:

properties
 Angle = VectorAngle.Rad2Deg*VectorAngle.getAngle(vx,vy)
end

6 Defining and Organizing Classes

6-12

Attempting to create an instance causes an error:

a = VectorAngle([1,0],[0,1])

Error using VectorAngle
Unable to update the class 'VectorAngle' because the new definition contains an
error:
 Undefined function or variable 'vx'.

Expressions in Class Methods

Expression in class methods execute like expressions in any function. MATLAB evaluates
an expression within the function workspace when the method executes. Therefore,
expressions used in class methods are not considered part of the class definition and are
not discussed in this section.

How MATLAB Evaluates Expressions
MATLAB evaluates the expressions used in the class definition without any workspace.
Therefore, these expressions cannot reference variables of any kind.

MATLAB evaluates expressions in the context of the class file, so these expressions can
access any functions, static methods, and constant properties of other classes that are on
your path at the time MATLAB initializes the class. Expressions defining property default
values can access constant properties defined in their own class.

When MATLAB Evaluates Expressions
MATLAB evaluates the expressions in class definitions only when initializing the class.
Initialization occurs before the first use of the class.

After initialization, the values returned by these expressions are part of the class
definition and are constant for all instances of the class. Each instance of the class uses
the results of the initial evaluation of the expressions without re-evaluation.

If you clear a class, then MATLAB reinitializes the class by reevaluating the expressions
that are part of the class definition. (see “Automatic Updates for Modified Classes” on
page 5-51)

 Evaluation of Expressions in Class Definitions

6-13

Expression Evaluation in Handle and Value Classes
The following example shows how value and handle object behave when assigned to
properties as default values. Suppose that you have the following classes.

Expressions in Value Classes

The ClassExp class has a property that contains a ContClass object:

classdef ContClass
 properties
 % Assign current date and time
 TimeProp = datestr(now)
 end
end

classdef ClassExp
 properties
 ObjProp = ContClass
 end
end

When you first use the ClassExp class, MATLAB creates an instance of the ContClass
class. MATLAB initializes both classes at this time. All instances of ClassExp include a
copy of this same instance of ContClass.

a = ClassExp;
a.ObjProp.TimeProp

ans =

08-Oct-2003 17:16:08

The TimeProp property of the ContClass object contains the date and time when
MATLAB initialized the class. Creating additional instances of the ClassExp class shows
that the date string has not changed:

b = ClassExp;
b.ObjProp.TimeProp

ans =

08-Oct-2003 17:16:08

6 Defining and Organizing Classes

6-14

Because this example uses a value class for the contained object, each instance of the
ClassExp has its own copy of the object. For example, suppose that you change the value
of the TimeProp property on the object contained by ClassExp objectb:

b.ObjProp.TimeProp = datestr(now)

ans =

08-Oct-2003 17:22:49

The copy of the object contained by object a is unchanged:

a.ObjProp.TimeProp

ans =

08-Oct-2003 17:16:08

Expressions in Handle Classes

Now consider the behavior if the contained object is a handle object:

classdef ContClass < handle
 properties
 TimeProp = datestr(now)
 end
end

Creating two instances of the ClassExp class shows that MATLAB created an object
when it initialized the ContClass. MATLAB used a copy of the object’s handle for each
instance of the ClassExp class. Therefore, there is one ContClass object and the
ObjProp property of each ClassExp object contains a copy of its handle.

Create an instance of the ClassExp class and note the time of creation:

a = ClassExp;
a.ObjProp.TimeProp

ans =

08-Oct-2003 17:46:01

Create a second instance of the ClassExp class. The ObjProp contains the handle of the
same object:

 Evaluation of Expressions in Class Definitions

6-15

b = ClassExp;
b.ObjProp.TimeProp

ans =

08-Oct-2003 17:46:01

Reassign the value of the contained object TimeProp property:

b.ObjProp.TimeProp = datestr(now);
b.ObjProp.TimeProp

ans =

08-Oct-2003 17:47:34

The ObjProp property of object b contains a handle to the same object as the ObjProp
property of object a. The value of the TimeProp property has changed on this object as
well:

a.ObjProp.TimeProp

ans =

08-Oct-2003 17:47:34

See Also

More About
• “Comparison of Handle and Value Classes” on page 7-2

6 Defining and Organizing Classes

6-16

Folders Containing Class Definitions
In this section...
“Class Definitions on the Path” on page 6-17
“Class and Path Folders” on page 6-17
“Using Path Folders” on page 6-17
“Using Class Folders” on page 6-18
“Functions in Private Folders Within Class Folders” on page 6-19
“Class Precedence and MATLAB Path” on page 6-19
“Changing Path to Update Class Definition” on page 6-21

Class Definitions on the Path
To call a class method, the class definition must be on the MATLAB path, as described in
the next sections.

Class and Path Folders
There are two types of folders that can contain class definition files.

• Path folders — The folder is on the MATLAB path and the folder name does not begin
with an @ character. Use this type of folder when you want multiple classes in one
folder. However, the entire class definition must be contained in one .m file.

• Class folders — The folder name begins with an @ character followed by the class
name. The folder is not on the MATLAB path, but its parent folder is on the path. Use
this type of folder when you want to use multiple files for one class definition.

See the path function for information about the MATLAB path.

Using Path Folders
The class definition files in the folders are on the MATLAB path. Therefore, class
definitions placed in path folders behave like any ordinary function with respect to
precedence—the first occurrence of a name on the MATLAB path takes precedence over
all subsequent occurrences of the same name.

 Folders Containing Class Definitions

6-17

The name of each class definition file must match the name of the class that is specified
with the classdef keyword. Using a path folder eliminates the need to create a separate
class folder for each class. However, the entire class definition, including all methods,
must be contained within a single file.

Suppose that you have three classes defined in a single folder:

.../path_folder/MyClass1.m

.../path_folder/MyClass2.m

.../path_folder/MyClass3.m

To use these classes, add path_folder to your MATLAB path:

addpath path_folder

Using Class Folders
A class folder name always begins with the @ character followed by the class name for the
folder name. A class folder must be contained in a path folder, but the class folder is not
on the MATLAB path. Place the class definition file inside the class folder, which also can
contain separate method files. The class definition file must have the same name as the
class folder (without the @ character). The class definition (beginning with the classdef
keyword) must appear in the file before any other code (white space and comments do not
constitute code).

.../parent_folder/@MyClass/MyClass.m

.../parent_folder/@MyClass/myMethod1.m

.../parent_folder/@MyClass/myMethod2.m

Define only one class per folder. All files have a .m extension or, for MATLAB versions
R2018a and later, standalone methods can be live functions with a .mlx extension.

Use a class folder when you want to use more than one file for your class definition.
MATLAB treats any .m file in the class folder as a method of the class. Class files provide
the advantage that MATLAB can explicitly identify any file in the folder as a method of
that class. For more information, see “Changing Path to Update Class Definition” on page
6-21.

The base name of each file must be a valid MATLAB function name. Valid function names
begin with an alphabetic character and can contain letters, numbers, or underscores. For
more information, see “Methods in Separate Files” on page 9-11.

6 Defining and Organizing Classes

6-18

Functions in Private Folders Within Class Folders
Private folders contain functions that are accessible only from functions defined in folders
immediately above the private folder. Any functions defined in a private folder inside
a class folder become methods of the class that have private access.

If a class folder contains a private folder, only the class defined in that folder can access
functions defined in the private folder. Subclasses do not have access to superclass
private functions. For more information on private folders, see “Private Functions”.

If you want a subclass to have access to the private functions of the superclass, define the
functions as protected methods of the superclass. Specify the methods with the Access
attribute set to protected.

Dispatching to Methods in Private Folders

If a class defines functions in a private folder that is in a class folder, then MATLAB
follows these precedence rules when dispatching to the private functions vs. a local
function defined in the classdef file:

• Using dot notation (obj.methodName), a function in a private folder takes
precedence over a local function defined in the classdef file.

• Using function notation (methodName(obj)), a local function defined in the
classdef file takes precedence over the function in the private folder.

No Class Definitions in Private Folders

You cannot put class definitions (classdef file) in private folders because doing so would
not meet the requirements for class or path folders.

Class Precedence and MATLAB Path
When there are multiple class definition files with the same name, the file location on the
MATLAB path determines the file precedence. All class definition files before a class on
the path take precedence, whether or not the definitions are contained in a class folder.
The class takes precedence over all class definition files occurring later on the path.

For example, consider a path with the following folders, containing the files indicated.

 Folders Containing Class Definitions

6-19

Order in Path Folder and File File Defines
1 fldr1/Foo.m Class Foo
2 fldr2/Foo.m Function Foo
3 fldr3/@Foo/Foo.m Class Foo
4 fldr4/@Foo/bar.m Method bar
5 fldr5/Foo.m Class Foo

Here is the logic that MATLAB applies to determine which version of Foo to call:

Class fldr1/Foo.m takes precedence over the class fldr3/@Foo because:

• fldr1/Foo.m is before fldr3/@Foo on the path

Class fldr3/@Foo takes precedence over function fldr2/Foo.m because:

• fldr3/@Foo is a class in a class folder
• fldr2/Foo.m is not a class
• Classes in class folders take precedence over functions

Function fldr2/Foo.m takes precedence over class fldr5/Foo.m because:

• fldr2/Foo.m comes before class fldr5/Foo.m on the path
• fldr5/Foo.m is not in a class folder
• Classes that are not defined in class folders obey the path order with respect to

functions.

Class fldr3/@Foo takes precedence over class fldr4/@Foo because:

• The method bar is not recognized as part of the Foo class defined in fldr3/@Foo.

If fldr3/@Foo/Foo.m does not contain a classdef keyword (that is, it is a MATLAB
class created before Version 7.6), then fldr4/@Foo/bar.m becomes a method of the Foo
class defined in fldr3/@Foo

Previous Behavior of Classes Defined in Class Folders

In MATLAB Versions 5 through 7, class folders do not shadow other class folders having
the same name, but residing in later path folders. Instead, the class uses the combination

6 Defining and Organizing Classes

6-20

of methods from all class folders having the same name to define the class. This behavior
is no longer supported.

For backward compatibility, classes defined in class folders always take precedence over
functions and scripts having the same name. This precedence applies to functions and
scripts that come before these classes on the path.

Changing Path to Update Class Definition
Changing your MATLAB path can change the class definition file for a class (see path).
However, for classes that are defined in path folders (that is, not in class @ folders), you
must clear the class before MATLAB recognizes the new folder as the current class
definition.

Class Definitions in Class Folders

Suppose that you define two versions of a class named Foo in two folders, fldA and
fldB.

fldA/+FooPkg/@Foo/Foo.m
fldB/+FooPkg/@Foo/Foo.m

Add folder fldA to the top of the path.

addpath fldA

Create an instance of class FooPkg.Foo. MATLAB uses fldA/+FooPkg/@Foo/Foo.m as
the class definition.

a = FooPkg.Foo;

Change the current folder to fldB.

cd fldB

The current folder is always first on the path. Therefore, MATLAB finds fldB/+FooPkg/
@Foo/Foo.m as the definition for class FooPkg.Foo.

b = FooPkg.Foo;

MATLAB automatically updates the existing instance, a, to use the new class definition in
fldB.

 Folders Containing Class Definitions

6-21

Class Definitions in Path Folders

Suppose that you define two versions of a class named Foo in two folders, fldA and
fldB, but do not use a class folder.

fldA/+FooPkg/Foo.m
fldB/+FooPkg/Foo.m

Add folder fldA to the top of the path.

addpath fldA

Create an instance of class FooPkg.Foo. MATLAB uses fldA/+FooPkg/@Foo/Foo.m as
the class definition.

a = FooPkg.Foo;

Change the current folder to fldB.

cd fldB

The current folder is effectively the top of the path. However, MATLAB does not identify
fldB/+FooPkg/Foo.m as the definition for class FooPkg.Foo. MATLAB continues to use
the original class definition until you clear the class.

To use the definition of FooPkg.Foo in foldB, clear FooPkg.Foo.

clear FooPkg.Foo

MATLAB automatically updates the existing objects to conform to the class definition in
fldB. Usually, clearing instance variables is unnecessary.

See Also

More About
• “Packages Create Namespaces” on page 6-25
• “Automatic Updates for Modified Classes” on page 5-51

6 Defining and Organizing Classes

6-22

Class Precedence
In this section...
“Use of Class Precedence” on page 6-23
“Why Mark Classes as Inferior” on page 6-23
“InferiorClasses Attribute” on page 6-23

Use of Class Precedence
MATLAB uses class precedence to determine which method to call when multiple classes
have the same method. You can specify the relative precedence of user-defined classes
with the class InferiorClasses attribute.

The material presented in this topic builds on an understanding of the following
information:

• “Class Metadata” on page 17-2
• “Attribute Specification” on page 5-22

Why Mark Classes as Inferior
When more than one class defines methods with the same name or when classes overload
functions, MATLAB determines which method or function to call based on the dominant
argument. Here is how MATLAB determines the dominant argument:

1 Determine the dominant argument based on the class of arguments.
2 If there is a dominant argument, call the method of the dominant class.
3 If arguments are of equal precedence, use the leftmost argument as the dominant

argument.
4 If the class of the dominant argument does not define a method with the name of the

called function, call the first function on the path with that name.

InferiorClasses Attribute
Specify the relative precedence of user-defined classes using the class
InferiorClasses attribute. To specify classes that are inferior to the class you are
defining, assign a cell array of class meta.class objects to this attribute.

 Class Precedence

6-23

For example, the following classdef declares that MyClass is dominant over
ClassName1 and ClassName2.

classdef (InferiorClasses = {?ClassName1,?ClassName2}) MyClass
 ...
end

The ? operator combined with a class name creates a meta.class object. See
metaclass.

The following MATLAB classes are always inferior to classes defined using the classdef
syntax and cannot be used in this list.

double, single, int64, uint64, int32, uint32, int16, uint16, int8, uint8, char,
string, logical, cell, struct, and function_handle.

Dominant Class

MATLAB uses class dominance when evaluating expressions involving objects of more
than one class. The dominant class determines:

• Which class method to call when more than one class defines methods with the same
names.

• The class of arrays that are formed by combining objects of different classes, assuming
MATLAB can convert the inferior objects to the dominant class.

No Attribute Inheritance

Subclasses do not inherit a superclass InferiorClasses attribute. Only classes
specified in the subclass InferiorClasses attribute are inferior to subclass objects.

See Also

More About
• “Class Precedence and MATLAB Path” on page 6-19
• “Dominant Argument in Overloaded Graphics Functions” on page 9-50

6 Defining and Organizing Classes

6-24

Packages Create Namespaces
In this section...
“Package Folders” on page 6-25
“Internal Packages” on page 6-26
“Referencing Package Members Within Packages” on page 6-26
“Referencing Package Members from Outside the Package” on page 6-27
“Packages and the MATLAB Path” on page 6-28

Package Folders
Packages are special folders that can contain class folders, function, and class definition
files, and other packages. The names of classes and functions are scoped to the package
folder. A package is a namespace within which names must be unique. Function and class
names must be unique only within the package. Using a package provides a means to
organize classes and functions. Packages also enable you to reuse the names of classes
and functions in different packages.

Note Packages are not supported for classes created before MATLAB Version 7.6 (that is,
classes that do not use classdef).

Package folders always begin with the + character. For example,

+mypack
+mypack/pkfcn.m % a package function
+mypack/@myClass % class folder in a package

The parent of the top-level package folder must be on the MATLAB path.

Listing the Contents of a Package

List the contents of a package using the help command:

help event

Contents of event:

EventData - event.EVENTDATA Base class for event data
PropertyEvent - event.PROPERTYEVENT Event data for object property events

 Packages Create Namespaces

6-25

listener - event.LISTENER Listener object
proplistener - event.PROPLISTENER Listener object for property events

You can also use the what command:

what event

Classes in directory Y:xxx\matlab\toolbox\matlab\lang\+event

EventData PropertyEvent listener proplistener

Internal Packages
MathWorks® reserves the use of packages named internal for utility functions used by
internal MATLAB code. Functions that belong to an internal package are intended for
MathWorks use only. Using functions or classes that belong to an internal package is
discouraged. These functions and classes are not guaranteed to work in a consistent
manner from one release to the next. Any of these functions and classes might be
removed from the MATLAB software in any subsequent release without notice and
without documentation in the product release notes.

Referencing Package Members Within Packages
All references to packages, functions, and classes in the package must use the package
name prefix, unless you import the package. (See “Import Classes” on page 6-31.) For
example, call this package function:

+mypack/pkfcn.m

With this syntax:

z = mypack.pkfcn(x,y);

Definitions do not use the package prefix. For example, the function definition line of the
pkfcn.m function would include only the function name:

function z = pkfcn(x,y)

Define a package class with only the class name:

classdef myClass

but call it with the package prefix:

6 Defining and Organizing Classes

6-26

obj = mypack.myClass(arg1,arg2,...);

Calling class methods does not require the package name because you have an object of
the class. You can use dot or function notation:

obj.myMethod(arg)
myMethod(obj,arg)

A static method requires the full class name, which includes the package name:

mypack.myClass.stMethod(arg)

Referencing Package Members from Outside the Package
Functions, classes, and other packages contained in a package are scoped to that
package. To reference any of the package members, prefix the package name to the
member name, separated by a dot. For example, the following statement creates an
instance of MyClass, which is contained in mypack package.

obj = mypack.MyClass;

Accessing Class Members — Various Scenarios

This section shows you how to access various package members from outside a package.
Suppose that you have a package mypack with the following contents:

+mypack
+mypack/myfcn.m
+mypack/@MyFirstClass
+mypack/@MyFirstClass/myFcn.m
+mypack/@MyFirstClass/otherFcn.m
+mypack/@MyFirstClass/MyFirstClass.m
+mypack/@MySecondClass
+mypack/@MySecondClass/MySecondClass.m
+mypack/+mysubpack
+mypack/+mysubpack/myFcn.m

Invoke the myFcn function in mypack:

mypack.myFcn(arg)

Create an instance of each class in mypack:

 Packages Create Namespaces

6-27

obj1 = mypack.MyFirstClass;
obj2 = mypack.MySecondClass(arg);

Invoke the myFcn function that is in the package mysubpack:

mypack.mysubpack.myFcn(arg1,arg2);

If mypack.MyFirstClass has a method called myFcn, call it like any method call on an
object:

obj = mypack.MyFirstClass;
myFcn(obj,arg);

If mypack.MyFirstClass has a property called MyProp, assign it using dot notation and
the object:

obj = mypack.MyFirstClass;
obj.MyProp = x;

Packages and the MATLAB Path
You cannot add package folders to the MATLAB path, but you must add the package
parent folder to the MATLAB path. Package members are not accessible if the package
parent folder is not on the MATLAB path, even if the package folder is the current folder.
Making the package folder the current folder is not sufficient to add the package parent
folder to the path.

Package members remain scoped to the package. Always refer to the package members
using the package name. Alternatively, import the package into the function in which you
call the package member, see “Import Classes” on page 6-31.

Package folders do not shadow other package folders that are positioned later on the
path, unlike classes, which do shadow other classes. If two or more packages have the
same name, MATLAB treats them all as one package. If redundantly named packages in
different path folders define the same function name, then MATLAB finds only one of
these functions.

Resolving Redundant Names

Suppose a package and a class have the same name. For example:

fldr_1/+foo
fldr_2/@foo/foo.m

6 Defining and Organizing Classes

6-28

A call to which foo returns the path to the executable class constructor:

>> which foo
fldr_2/@foo/foo.m

A function and a package can have the same name. However, a package name by itself is
not an identifier. Therefore, if a redundant name occurs alone, it identifies the function.
Executing a package name alone returns an error.

Package Functions vs. Static Methods

In cases where a package and a class have the same name, a package function takes
precedence over a static method. For example, path folder fldrA contains a package
function and path folder fldrB contains a class static method:
fldrA/+foo/bar.m % bar is a function in package foo
fldrB/@foo/bar.m % bar is a static method of class foo

A call to which foo.bar returns the path to the package function:

which foo.bar

fldrA\+foo\bar.m % package function

In cases where the same path folder contains both package and class folders with the
same name, the package function takes precedence over the static method.
fldr/@foo/bar.m % bar is a static method of class foo
fldr/+foo/bar.m % bar is a function in package foo

A call to which foo.bar returns the path to the package function:

which foo.bar

fldr/+foo/bar.m

If a path folder fldr contains a classdef file foo that defines a static method bar and
the same folder contains a package +foo that contains a package function bar.
fldr/foo.m % bar is a static method of class foo
fldr/+foo/bar.m % bar is a function in package foo

A call to which foo.bar returns the path to the package function:

which foo.bar

fldr/+foo/bar.m

 Packages Create Namespaces

6-29

See Also

More About
• “Folders Containing Class Definitions” on page 6-17
• “Class Precedence” on page 6-23

6 Defining and Organizing Classes

6-30

Import Classes
In this section...
“Syntax for Importing Classes” on page 6-31
“Import Static Methods” on page 6-31
“Import Package Functions” on page 6-32
“Package Function and Class Method Name Conflict” on page 6-32
“Clearing Import List” on page 6-32

Syntax for Importing Classes
Import classes into a function to simplify access to class members. For example, suppose
that there is a package that contains several classes and you will use only one of these
classes or a static method in your function. Use the import command to simplify code.
Once you have imported the class, you do not need to reference the package name:
function myFunc
 import pkg.MyClass
 obj = MyClass(arg,...); % call MyClass constructor
 obj.Prop = MyClass.staticMethod(arg,...); % call MyClass static method
end

Import all classes in a package using the syntax pkg.*:

function myFunc
 import pkg.*
 obj1 = MyClass1(arg,...); % call pkg.MyClass1 constructor
 obj2 = MyClass2(arg,...); % call pkg.MyClass2 constructor
 a = pkgFunction(); % call package function named pkgFunction
end

Import Static Methods
Use import to import a static method so that you can call this method without using the
class name. Call import with the full class name, including any packages, and the static
method name.

function myFunc
 import pkg.MyClass.MyStaticMethod
 MyStaticMethod(arg,...); % call static method
end

 Import Classes

6-31

Import Package Functions
Use import to import package functions so that you can call these functions without
using the package name. Call import with the package and function name.

function myFunc
 import pkg.pkgFunction
 pkgFunction(arg,...); % call imported package function
end

Package Function and Class Method Name Conflict
Avoid importing an entire package using the * wildcard syntax. Doing so imports an
unspecified set of names into the local scope. For example, suppose that you have the
following folder organization:

+pkg/timedata.m % package function
+pkg/@MyClass/MyClass.m % class definition file
+pkg/@MyClass/timedata.m % class method

Import the package and call timedata on an instance of MyClass:

import pkg.*
myobj = pkg.MyClass;
timedata(myobj)

A call to timedata finds the package function, not the class method because MATLAB
applies the import and finds pkg.timedata first. Do not use a package in cases where
you have name conflicts and plan to import the package.

Clearing Import List
You cannot clear the import list from a function workspace. To clear the base workspace
only, use:

clear import

See Also
import

6 Defining and Organizing Classes

6-32

More About
• “Packages Create Namespaces” on page 6-25

 See Also

6-33

Value or Handle Class — Which to
Use

• “Comparison of Handle and Value Classes” on page 7-2
• “Which Kind of Class to Use” on page 7-11
• “The Handle Superclass” on page 7-13
• “Handle Class Destructor” on page 7-16
• “Find Handle Objects and Properties” on page 7-26
• “Implement Set/Get Interface for Properties” on page 7-28
• “Implement Copy for Handle Classes” on page 7-35

7

Comparison of Handle and Value Classes

In this section...
“Basic Difference” on page 7-2
“Behavior of MATLAB Built-In Classes” on page 7-3
“User-Defined Value Classes” on page 7-4
“User-Defined Handle Classes” on page 7-5
“Determining Equality of Objects” on page 7-8
“Functionality Supported by Handle Classes” on page 7-10

Basic Difference
A value class constructor returns an object that is associated with the variable to which it
is assigned. If you reassign this variable, MATLAB creates an independent copy of the
original object. If you pass this variable to a function to modify it, the function must
return the modified object as an output argument. For information on value-class
behavior, see “Avoid Unnecessary Copies of Data”.

A handle class constructor returns a handle object that is a reference to the object
created. You can assign the handle object to multiple variables or pass it to functions
without causing MATLAB to make a copy of the original object. A function that modifies a
handle object passed as an input argument does not need to return the object.

All handle classes are derived from the abstract handle class.

Create a Value Class

By default, MATLAB classes are value classes. The following definition creates a value
class named MyValueClass:

classdef MyValueClass
 ...
end

Create a Handle Class

To create a handle class, derive the class from the handle class.

7 Value or Handle Class — Which to Use

7-2

classdef MyHandleClass < handle
 ...
end

Behavior of MATLAB Built-In Classes
MATLAB fundamental classes are value classes (numeric, logical, char, cell, struct,
and function handle). For example, if you create an object of the class int32 and make a
copy of this object, the result is two independent objects. When you change the value of a,
the value of b does not change. This behavior is typical of classes that represent values.

a = int32(7);
b = a;
a = a^4;

b
 7

MATLAB graphics objects are implemented as handle objects because they represent
visual elements. For example, create a graphics line object and copy its handle to another
variable. Both variables refer to the same line object.

x = 1:10; y = sin(x);
l1 = line(x,y);
l2 = l1;

Set the properties of the line object using either copy of the handle.

set(l2,'Color','red')
set(l1,'Color','green')

get(l2,'Color')

ans =

 0 1 0

Calling the delete function on the l2 handle destroys the line object. If you attempt to
set the Color property on the line l1, the set function returns an error.

delete(l2)
set(l1,'Color','blue')

Error using matlab.graphics.primitive.Line/set
Invalid or deleted object.

 Comparison of Handle and Value Classes

7-3

If you delete the object by deleting any one of the existing handles, all copies are now
invalid because you deleted the single object to which all handles refer.

Deleting a handle object is not the same as clearing the handle variable. In the graphics
object hierarchy, the parent of the object holds a reference to the object. For example, the
parent axes hold a reference to the line object referred to by l1 and l2. If you clear both
variables from the workspace, the object still exists.

For more information on the behavior of handle objects, see “Handle Object Behavior” on
page 1-9.

User-Defined Value Classes
MATLAB associates objects of value classes with the variables to which you assign the
object. When you copy a value object to another variable or pass a value object to a
function, MATLAB creates an independent copy of the object and all the data contained by
the object. The new object is independent of changes to the original object. Value objects
behave like MATLAB numeric and struct classes. Each property behaves essentially like
a MATLAB array.

Value objects are always associated with one workspace or temporary variable. Value
objects go out of scope when their variable goes out of scope or is cleared. There are no
references to value objects, only copies that are independent objects.

Value Object Behavior

Here is a value class that stores a value in its Number property. The default property
value is the number 1.

classdef NumValue
 properties
 Number = 1
 end
end

Create a NumValue object assigned to the variable a.

a = NumValue

a =

 NumValue with properties:

7 Value or Handle Class — Which to Use

7-4

 Number: 1

Assign the value of a to another variable, b.

b = a

b =

 NumValue with properties:

 Number: 1

The variables a and b are independent. Changing the value of the Number property of a
does not affect the Number property of b.

a.Number = 7

a =

 NumValue with properties:

 Number: 7

b

b =

 NumValue with properties:

 Number: 1

Modifying Value Objects in Functions

When you pass a value object to a function, MATLAB creates a copy of that object in the
function workspace. Because copies of value objects are independent, the function does
not modify the object in the caller’s workspace. Therefore, functions that modify value
objects must return the modified object to be reassigned in the caller’s workspace.

For more information, see “Object Modification” on page 5-63.

User-Defined Handle Classes
Instances of classes that derive from the handle class are references to the underlying
object data. When you copy a handle object, MATLAB copies the handle, but does not

 Comparison of Handle and Value Classes

7-5

copy the data stored in the object properties. The copy refers to the same object as the
original handle. If you change a property value on the original object, the copied handle
references the same change.

Handle Object Behavior

Here is a handle class that stores a value in its Number property. The default property
value is the number 1.

classdef NumHandle < handle
 properties
 Number = 1
 end
end

Create a NumHandle objects assigned to the variable a.

a = NumHandle

a =

 NumHandle with properties:

 Number: 1

Assign the value of a to another variable, b.

b = a

b =

 NumHandle with properties:

 Number: 1

The variables a and b refer to the same underlying object. Changing the value of the
Number property of a also changes the Number property of b. That is, a and b refer to the
same object.

a.Number = 7

a =

 NumHandle with properties:

7 Value or Handle Class — Which to Use

7-6

 Number: 7

b

b =

 NumHandle with properties:

 Number: 7

Modifying Handle Objects in Functions

When you pass a handle object to a function, MATLAB creates a copy of the handle in the
function workspace. Because copies of handles reference the same underlying object,
functions that modify the handle object effectively modify the object in the caller’s
workspace as well. Therefore, it is not necessary for functions that modify handle objects
passed as input arguments to return the modified object to the caller.

For more information, see “Object Modification” on page 5-63.

Deleting Handles

You can destroy handle objects by explicitly calling the handle delete method. Deleting
the handle of a handle class object makes all handles invalid. For example:

a = NumHandle;
b = a;
delete(a)
b.Number

Invalid or deleted object.

Calling delete on a handle object invokes the destructor function or functions for that
object. See “Handle Class Destructor” on page 7-16 for more information.

Initialize Properties to Contain Handle Objects

For information on the differences between initializing properties to default values in the
properties block and initializing properties from within the constructor, see “Initialize
Property Values” on page 8-18 and “Initialize Arrays of Handle Objects” on page 10-11.

 Comparison of Handle and Value Classes

7-7

Determining Equality of Objects
Equality for value objects means that the objects are of the same class and have the same
state.

Equality for handle objects means that the handle variables refer to the same object. You
also can identify handle variables that refer to different objects of the same class that
have the same state.

Equality of Value Objects

To determine if value objects are the same size and their contents are of equal value, use
isequal. For example, use the previously defined NumValue class to create two
instances and test for equality:

a = NumValue;
b = NumValue;
isequal(a,b)

ans =

 1

a and b are independent and therefore are not the same object. However each represents
the same value.

If you change the value represented by a value object, the objects are no longer equal.

a = NumValue;
b = NumValue;
b.Number = 7;
isequal(a,b)

ans =

 0

Value classes do not have a default eq method to implement the == operation.

Equality of Handle Objects

Handle objects inherit an eq method from the handle base class. You can use == and
isequal to test for two different relationships among handle objects:

7 Value or Handle Class — Which to Use

7-8

• The handles refer to the same object: == and isequal return true.
• The handles refer to objects of the same class that have the same values, but are not

the same objects — only isequal returns true.

Use the previously defined NumHandle class to create an object and copy the handle.

a = NumHandle;
b = a;

Test for equality using == and isequal.

a == b

ans =

 1

isequal(a,b)

ans =

 1

Create two instances of the NumHandle class using the default values.

a = NumHandle;
b = NumHandle;

Determine if a and b refer to the same object.

a == b

ans =

 0

Determine if a and b have the same values.

isequal(a,b)

ans =

 1

 Comparison of Handle and Value Classes

7-9

Functionality Supported by Handle Classes
Deriving from the handle class enables your class to:

• Inherit several useful methods (“Handle Class Methods” on page 7-13)
• Define events and listeners (“Events and Listeners Syntax” on page 11-22)
• Define dynamic properties (“Dynamic Properties — Adding Properties to an Instance”

on page 8-71)
• Implement set and get methods (“Implement Set/Get Interface for Properties” on page

7-28)
• Customize copy behavior (“Implement Copy for Handle Classes” on page 7-35)

See “The Handle Superclass” on page 7-13 for more information on the handle class and
its methods.

See Also

Related Examples
• “Which Kind of Class to Use” on page 7-11
• “Implement Copy for Handle Classes” on page 7-35
• “Handle Object Behavior” on page 1-9

7 Value or Handle Class — Which to Use

7-10

Which Kind of Class to Use
In this section...
“Examples of Value and Handle Classes” on page 7-11
“When to Use Value Classes” on page 7-11
“When to Use Handle Classes” on page 7-12

Examples of Value and Handle Classes
Handle and value classes are useful in different situations. For example, value classes
enable you to create new array classes that have the same behavior as MATLAB numeric
classes.

“Representing Polynomials with Classes” on page 20-2 and “Representing Structured
Data with Classes” on page 3-19 provides examples of value classes.

Handle classes enable you to create objects that more than one function or object can
share. Handle objects allow more complex interactions among objects because they allow
objects to reference each other.

“Implementing Linked Lists with Classes” on page 3-31 and “Developing Classes —
Typical Workflow” on page 3-8 provides examples of a handle class.

When to Use Value Classes
Value class objects behave like normal MATLAB variables. A typical use of value classes is
to define data structures. For example, suppose that you want to define a class to
represent polynomials. This class can define a property to contain a list of coefficients for
the polynomial. It can implement methods that enable you to perform various operations
on the polynomial object. For example, implement addition and multiplication without
converting the object to another class.

A value class is suitable because you can copy a polynomial object and have two objects
that are identical representations of the same polynomial. For an example of value
classes, see “Subclasses of MATLAB Built-In Types” on page 12-50.

For information on MATLAB pass-by-value semantics, see “Avoid Unnecessary Copies of
Data”.

 Which Kind of Class to Use

7-11

When to Use Handle Classes
Handle objects are useful in specialized circumstances where an object represents a
physical object such as a graph or an external device rather than a mathematical object
like a number or matrix. Handle objects are derivations of the handle class, which
provides functionality such as events and listeners, destructor method, and support for
dynamic properties.

Use a handle class when:

• No two instances of a class can have the same state, making it impossible to have
exact copies. For example:

• A copy of a graphics object (such as a line) has a different position in its parents list
of children than the object from which it was copied. Therefore, the two objects are
not identical.

• Nodes in lists or trees having specific connectivity to other nodes — no two nodes
can have the same connectivity.

• The class represents physical and unique objects like serial ports and printers.
• The class represents visible objects like graphics components.
• The class defines events and notifies listeners when an event occurs (notify is a

handle class method).
• The class creates listeners by calling the handle class addlistener method.
• The class subclasses the dynamicprops class (a subclass of handle) so that

instances can define dynamic properties.
• The class subclasses the matlab.mixin.SetGet class (a subclass of handle) so that

it can implement a graphics object style set/get interface to access property values.
• You want to create a singleton class or a class in which you track the number of

instances from within the constructor.
• Instances of a class cannot share state, such as nodes in a linked list.

See Also

Related Examples
• “Handle Compatible Classes” on page 12-39

7 Value or Handle Class — Which to Use

7-12

The Handle Superclass
In this section...
“Building on the Handle Class” on page 7-13
“Handle Class Methods” on page 7-13
“Event and Listener Methods” on page 7-14
“Relational Methods” on page 7-14
“Test Handle Validity” on page 7-14
“When MATLAB Destroys Objects” on page 7-15

Building on the Handle Class
The handle class is an abstract class. Therefore, you cannot create objects of this class
directly. Use the handle class as a superclass to implement subclasses that inherit
handle behavior. MATLAB defines several classes that derive from the handle class.
These classes provide specialized functionality to subclasses.

Specialized Handle Base Classes

To add both handle behavior and specific functionality to your class, derive your class
from these handle classes:

• matlab.mixin.SetGet — Provides set and get methods to access property values.
• dynamicprops — Enables you to define properties that are associated with an object,

but not the class in general.
• matlab.mixin.Copyable Provides a copy method that you can customize for your

class.

For information on how to define subclasses, see “Design Subclass Constructors” on page
12-9 .

Handle Class Methods
When you derive a class from the handle class, the subclass inherits methods that enable
you to work more effectively with handle objects.

List the methods of a class by passing the class name to the methods function:

 The Handle Superclass

7-13

methods('handle')

Methods for class handle:

addlistener findobj gt lt
delete findprop isvalid ne
eq ge le notify

Event and Listener Methods
For information on how to use the notify and addlistener methods, see “Events and
Listeners Syntax” on page 11-22.

Relational Methods
TF = eq(H1,H2)
TF = ne(H1,H2)
TF = lt(H1,H2)
TF = le(H1,H2)
TF = gt(H1,H2)
TF = ge(H1,H2)

The handle class overloads these functions to support equality tests and sorting on
handles. For each pair of input arrays, these functions return a logical array of the same
size. Each element is an element-wise equality or comparison test result. The input arrays
must be the same size or one (or both) can be scalar. The method performs scalar
expansion as required. For more information on handle class relational methods, see
relationaloperators.

Test Handle Validity
Use the isvalid handle class method to determine if a variable is a valid handle object.
For example, in the statement:

B = isvalid(H)

B is a logical array in which each element is true if, and only if, the corresponding
element of H is a valid handle. B is always the same size as H.

7 Value or Handle Class — Which to Use

7-14

When MATLAB Destroys Objects
MATLAB destroys objects in the workspace of a function when the function:

• Reassigns an object variable to a new value
• Does not use an object variable for the remainder of a function
• Function execution ends

When MATLAB destroys an object, it also destroys values stored in the properties of the
object. MATLAB frees computer memory associated with the object for use by MATLAB or
the operating system.

You do not need to free memory in handle classes. However, there can be other operations
that you want to perform when destroying an object. For example, closing a file or
shutting down an external program that the object constructor started. Define a delete
method in your handle subclass for these purposes.

See “Handle Class Destructor” on page 7-16 for more information.

See Also

Related Examples
• “Comparison of Handle and Value Classes” on page 7-2

 See Also

7-15

Handle Class Destructor
In this section...
“Basic Knowledge” on page 7-16
“Syntax of Handle Class Destructor Method” on page 7-16
“Handle Object During delete Method Execution” on page 7-17
“Support Destruction of Partially Constructed Objects” on page 7-18
“When to Define a Destructor Method” on page 7-19
“Destructors in Class Hierarchies” on page 7-20
“Object Lifecycle” on page 7-21
“Restrict Access to Object Delete Method” on page 7-22
“Nondestructor Delete Methods” on page 7-23
“Java Objects Referencing MATLAB Objects” on page 7-23

Basic Knowledge
Class destructor – a method named delete that MATLAB calls implicitly before
destroying an object of a handle class. Also, user-defined code can call delete explicitly
to destroy an object.

Nondestructor – a method named delete that does not meet the syntax requirements of
a valid destructor. Therefore, MATLAB does not call this method implicitly when
destroying handle objects. A method named delete in a value class is not a destructor. A
method named delete in a value class that sets the HandleCompatible attribute to
true is not a destructor.

“Object Lifecycle” on page 7-21

“Method Attributes” on page 9-5

Syntax of Handle Class Destructor Method
MATLAB calls the destructor of a handle class when destroying objects of the class.
MATLAB recognizes a method named delete as the class destructor only if you define
delete as an ordinary method with the appropriate syntax.

7 Value or Handle Class — Which to Use

7-16

To be a valid class destructor, the delete method:

• Must define one, scalar input argument, which is an object of the class.
• Must not define output arguments
• Cannot be Sealed, Static, or Abstract
• Cannot use arguments blocks for input argument validation.

In addition, the delete method should not:

• Throw errors, even if the object is invalid.
• Create new handles to the object being destroyed
• Call methods or access properties of subclasses

MATLAB does not call a noncompliant delete method when destroying objects of the
class. A noncompliant delete method can prevent the destruction of the object by
shadowing the handle class delete method.

A delete method defined by a value class that is handle compatible is not a destructor,
even if the delete method is inherited by a handle subclass. For information on handle
compatible classes, see “Handle Compatible Classes” on page 12-39.

Declare delete as an ordinary method:

methods
 function delete(obj)
 % obj is always scalar
 ...
 end
end

delete Called Element-Wise on Array

MATLAB calls the delete method separately for each element in an array. Therefore, a
delete method is passed only one scalar argument with each invocation.

Calling delete on a deleted handle should not error and can take no action. This design
enables delete to work on object arrays containing a mix of valid and invalid objects.

Handle Object During delete Method Execution
Calling the delete method on an object always results in the destruction of the object.
The object is destroyed when the call to delete is made explicitly in MATLAB code or

 Handle Class Destructor

7-17

when called by MATLAB because an object is no longer reachable from any workspace.
Once called, a delete method cannot abort or prevent object destruction.

A delete method can access properties of the object being deleted. MATLAB does not
destroy these properties until after the delete methods for the class of the object and all
superclasses finish executing.

If a delete method creates new variables that contain a handle to the object being
deleted, those handles are invalid. After the delete method finishes execution, handles
to the deleted object in any variables in any workspace are invalid.

The isvalid method returns false for the handle object within the delete method
because object destruction begins when the method is called.

MATLAB calls delete methods in the inverse of the construction order. That is, MATLAB
invokes subclass delete methods before superclass delete methods.

If a superclass expects a property to be managed by subclasses, then the superclass
should not access that property in its delete method. For example, if a subclass uses an
inherited abstract property to store an object handle, then the subclass should destroy
this object in its delete method, but the superclass should not access that property in its
delete method.

Support Destruction of Partially Constructed Objects
Errors that occur while constructing an object can result in a call to delete before the
object is fully created. Therefore, class delete methods must be able to work with
partially constructed objects.

For example, the PartialObject class delete method determines if the Data property
is empty before accessing the data this property contains. If an error occurs while
assigning the constructor argument to the Name property, MATLAB passes the partially
constructed object to delete.

classdef PartialObject < handle
 properties
 % Restrict the Name property
 % to a cell array
 Name cell
 Data
 end
 methods

7 Value or Handle Class — Which to Use

7-18

 function h = PartialObject(name)
 if nargin > 0
 h.Name = name;
 h.Data.a = rand(10,1);
 end
 end
 function delete(h)
 % Protect against accessing properties
 % of partially constructed objects
 if ~isempty(h.Data)
 t = h.Data.a;
 disp(t)
 else
 disp('Data is empty')
 end
 end
 end
end

An error occurs if you call the constructor with a char vector, instead of the required cell
array:

obj = PartialObject('Test')

MATLAB passes the partially constructed object to the delete method. The constructor
did not set the value of the Data property because the error occurred when setting the
Name property.

Data is empty
Error setting 'Name' property of 'PartialObject' class:
...

When to Define a Destructor Method
Use a delete method to perform cleanup operations before MATLAB destroys the object.
MATLAB calls the delete method reliably, even if execution is interrupted with Ctrl-c or
an error.

If an error occurs during the construction of a handle class, MATLAB calls the class
destructor on the object along with the destructors for any objects contained in properties
and any initialized base classes.

 Handle Class Destructor

7-19

For example, suppose that a method opens a file for writing and you want to close the file
in your delete method. The delete method can call fclose on a file identifier that the
object stores in its FileID property:

function delete(obj)
 fclose(obj.FileID);
end

Destructors in Class Hierarchies
If you create a hierarchy of classes, each class can define its own delete method. When
destroying an object, MATLAB calls the delete method of each class in the hierarchy.
Defining a delete method in a handle subclass does not override the handle class
delete method. Subclass delete methods augment the superclass delete methods.

Inheriting a Sealed Delete Method

Classes cannot define a valid destructor that is Sealed. MATLAB returns an error when
you attempt to instantiate a class that defines a Sealed delete method.

Normally, declaring a method as Sealed prevents subclasses from overriding that
method. However, a Sealed method named delete that is not a valid destructor does
not prevent a subclass from defining its own destructor.

For example, if a superclass defines a method named delete that is not a valid
destructor, but is Sealed, then subclasses:

• Can define valid destructors (which are always named delete).
• Cannot define methods named delete that are not valid destructors.

Destructors in Heterogeneous Hierarchies

Heterogeneous class hierarchies require that all methods to which heterogeneous arrays
are passed must be sealed. However, the rule does not apply to class destructor methods.
Because destructor methods cannot be sealed, you can define a valid destructor in a
heterogeneous hierarchy that is not sealed, but does function as a destructor.

For information on heterogeneous hierarchies, see “Designing Heterogeneous Class
Hierarchies” on page 10-24

7 Value or Handle Class — Which to Use

7-20

Object Lifecycle
MATLAB invokes the delete method when the lifecycle of an object ends. The lifecycle of
an object ends when the object is:

• No longer referenced anywhere
• Explicitly deleted by calling delete on the handle

Inside a Function

The lifecycle of an object referenced by a local variable or input argument exists from the
time the variable is assigned until the time it is reassigned, cleared, or no longer
referenced within that function or in any handle array.

A variable goes out of scope when you explicitly clear it or when its function ends. When a
variable goes out of scope and its value belongs to a handle class that defines a delete
method, MATLAB calls that method. MATLAB defines no ordering among variables in a
function. Do not assume that MATLAB destroys one value before another value when the
same function contains multiple values.

Sequence During Handle Object Destruction

MATLAB invokes the delete methods in the following sequence when destroying an
object:

1 The delete method for the class of the object
2 The delete method of each superclass class, starting with the immediate

superclasses and working up the hierarchy to the most general superclasses

MATLAB invokes the delete methods of superclasses at the same level in the hierarchy
in the order specified in the class definition. For example, the following class definition
specifies supclass1 before supclass2. MATLAB calls the delete method of
supclass1 before the delete method of supclass2.

classdef myClass < supclass1 & supclass2

After calling each delete method, MATLAB destroys the property values belonging
exclusively to the class whose method was called. The destruction of property values that
contain other handle objects can cause a call the delete methods for those objects when
there are no other references to those objects.

 Handle Class Destructor

7-21

Superclass delete methods cannot call methods or access properties belonging to a
subclass.

Destruction of Objects with Cyclic References

Consider a set of objects that reference other objects of the set such that the references
form a cyclic graph. In this case, MATLAB:

• Destroys the objects if they are referenced only within the cycle
• Does not destroy the objects as long as there is an external reference to any of the

objects from a MATLAB variable outside the cycle

MATLAB destroys the objects in the reverse of the order of construction. for more
information, see “Handle Object During delete Method Execution” on page 7-17.

Restrict Access to Object Delete Method
Destroy handle objects by explicitly calling delete on the object:

delete(obj)

A class can prevent explicit destruction of an object by setting its delete method
Access attribute to private. However, a method of the class can call the private
delete method.

If the class delete method Access attribute is protected, only methods of the class
and of subclasses can explicitly delete objects of that class.

However, when an object lifecycle ends, MATLAB calls the object’s delete method when
destroying the object regardless of the method’s Access attribute.

Inherited Private Delete Methods

Class destructor behavior differs from the normal behavior of an overridden method.
MATLAB executes each delete method of each superclass upon destruction, even if that
delete method is not public.

When you explicitly call an object’s delete method, MATLAB checks the delete method
Access attribute in the class defining the object, but not in the superclasses of the object.
A superclass with a private delete method cannot prevent the destruction of subclass
objects.

7 Value or Handle Class — Which to Use

7-22

Declaring a private delete method makes most sense for sealed classes. In the case where
classes are not sealed, subclasses can define their own delete methods with public access.
MATLAB calls a private superclass delete method as a result of an explicit call to a
public subclass delete method.

Nondestructor Delete Methods
A class can implement a method named delete that is not a valid class destructor.
MATLAB does not call this method implicitly when destroying an object. In this case,
delete behaves like an ordinary method.

For example, if the superclass implements a Sealed method named delete that is not a
valid destructor, then MATLAB does not allow subclasses to override this method.

A delete method defined by a value class cannot be a class destructor.

Java Objects Referencing MATLAB Objects
Java does not support the object destructors that MATLAB objects use. Therefore, it is
important to manage the lifecycle of all objects used in applications that include both Java
and MATLAB objects.

References Can Prevent Destructor Execution

Java objects that hold references to MATLAB objects can prevent deletion of the MATLAB
objects. In these cases, MATLAB does not call the handle object delete method even
when there is no handle variable referring to that object. To ensure your delete method
executes, call delete on the object explicitly before the handle variable goes out of
scope.

Problems can occur when you define callbacks for Java objects that reference MATLAB
objects.

For example, the CallbackWithJava class creates a Java
com.mathworks.jmi.Callback object and assigns a class method as the callback
function. The result is a Java object that has a reference to a handle object via the
function-handle callback.
classdef CallbackWithJava < handle
 methods
 function obj = CallbackWithJava
 jo = com.mathworks.jmi.Callback;

 Handle Class Destructor

7-23

 set(jo,'DelayedCallback',@obj.cbFunc); % Assign method as callback
 jo.postCallback
 end
 function cbFunc(obj,varargin)
 c = class(obj);
 disp(['Java object callback on class ',c])
 end
 function delete(obj)
 c = class(obj);
 disp(['ML object destructor called for class ',c])
 end
 end
end

Suppose that you create a CallbackWithJava object from within a function:

function testDestructor
 cwj = CallbackWithJava
 ...
end

Creating an instance of the CallbackWithJava class creates the
com.mathworks.jmi.Callback object and executes the callback function:

testDestructor

cwj =

 CallbackWithJava with no properties.

Java object callback on class CallbackWithJava

The handle variable, cwj, exists only in the function workspace. However, MATLAB does
not call the class delete method when the function ends. The
com.mathworks.jmi.Callback object still exists and holds a reference to the object of
the CallbackWithJava class, which prevents destruction of the MATLAB object.

clear classes

Warning: Objects of 'CallbackWithJava' class exist. Cannot clear this class or
any of its superclasses.

To avoid causing inaccessible objects, call delete explicitly before losing the handle to
the MATLAB object.

function testDestructor
 cwj = CallbackWithJava
 ...

7 Value or Handle Class — Which to Use

7-24

 delete(cwj)
end

Manage Object Lifecycle in Applications

MATLAB applications that use Java objects should manage the lifecycle of the objects
involved. A typical user interface application references Java objects from MATLAB
objects and creates callbacks on Java objects that reference MATLAB objects.

You can break these cyclic references in various ways:

• Explicitly call delete on the MATLAB objects when they are no longer needed
• Unregister the Java object callbacks that reference MATLAB objects
• Use intermediate handle objects that reference both the Java callbacks and the

MATLAB objects.

See Also

More About
• “Handle Object Behavior” on page 1-9

 See Also

7-25

Find Handle Objects and Properties
In this section...
“Find Handle Objects” on page 7-26
“Find Handle Object Properties” on page 7-26

Find Handle Objects
The findobj method enables you to locate handle objects that meet certain conditions.

function HM = findobj(H,<conditions>)

The findobj method returns an array of handles matching the conditions specified. You
can use regular expressions with findobj. For more information, see regexp.

Find Handle Object Properties
The findprop method returns the meta.property object for the specified object and
property.

function mp = findprop(h,'PropertyName')

The property can also be a dynamic property created by the addprop method of the
dynamicprops class.

Use the returned meta.property object to obtain information about the property, such
as the settings of any of its attributes. For example, the following statements determine
that the setting of the AccountStatus property Dependent attribute is false.

ba = BankAccount(007,50,'open');
mp = findprop(ba,'AccountStatus');
mp.Dependent

ans =
 0

See Also
handle

7 Value or Handle Class — Which to Use

7-26

Related Examples
• “Class Metadata” on page 17-2

 See Also

7-27

Implement Set/Get Interface for Properties

In this section...
“The Standard Set/Get Interface” on page 7-28
“Subclass Syntax” on page 7-28
“Get Method Syntax” on page 7-29
“Set Method Syntax” on page 7-29
“Class Derived from matlab.mixin.SetGet” on page 7-30

The Standard Set/Get Interface
Some MATLAB objects, such as graphics objects, implement an interface based on set
and get functions. These functions enable access to multiple properties on arrays of
objects in a single function call.

You can add set and get functionality to your class by deriving from one of these classes:

• matlab.mixin.SetGet — use when you want support for case-insensitive, partial
property name matching. Deriving from matlab.mixin.SetGet does not affect the
exact property name required by the use of dot notation reference to properties.

• matlab.mixin.SetGetExactNames — use when you want to support only case-
sensitive full property name matching.

Note The set and get methods referred to in this section are different from property set
access and property get access methods. See “Property Access Methods” on page 8-52
for information on property access methods.

Subclass Syntax
Use the abstract class matlab.mixin.SetGet or matlab.mixin.SetGetExactNames
as a superclass:

classdef MyClass < matlab.mixin.SetGet
 ...
end

7 Value or Handle Class — Which to Use

7-28

Because matlab.mixin.SetGet and matlab.mixin.SetGetExactNames derive from
the handle class, your subclass is also a handle class.

Get Method Syntax
The get method returns the value of an object property using the object handle and the
property name. For example, assume H is the handle to an object:

v = get(H,'PropertyName');

If you specify an array of handles with a single property name, get returns the property
value for each object as a cell array of values:

CV = get(H,'PropertyName');

The CV array is always a column regardless of the shape of H.

If you specify a cell array of char vector property names and an array of handles, get
returns a cell array of property values. Each row in the cell corresponds to an object in
the handle array. Each column in the cell corresponds to a property name.

props = {'PropertyName1','PropertyName2'};
CV = get(H,props);

get returns an m-by-n cell array, where m = length(H) and n = length(props).

If you specify a handle array, but no property names, get returns an array of type struct
in which each structure in the array corresponds to an object in H. Each field in each
structure corresponds to a property defined by the class of H. The value of each field is
the value of the corresponding property.

SV = get(H);

If you do not assign an output variable, then H must be scalar.

For an example, see “Using get with Arrays of Handles” on page 7-32.

Set Method Syntax
The set method assigns the specified value to the specified property for the object with
handle H. If H is an array of handles, MATLAB assigns the value to the property for each
object in the array H.

 Implement Set/Get Interface for Properties

7-29

set(H,'PropertyName',PropertyValue)

You can pass a cell array of property names and a cell array of property values to set:

props = {'PropertyName1','PropertyName2'};
vals = {Property1Value,Property2Value};
set(H,props,vals)

If length(H) is greater than one, then the property value cell array (vals) can have
values for each property in each object. For example, suppose length(H) is 2 (two object
handles). You want to assign two property values on each object:
props = {'PropertyName1','PropertyName2'};
vals = {Property11Value,Property12Value;Property21Value,Property22Value};
set(H,props,vals))

The preceding statement is equivalent to the follow two statements:
set(H(1),'PropertyName1',Property11Value,'PropertyName2',Property12Value)
set(H(2),'PropertyName1',Property21Value,'PropertyName2',Property22Value)

If you specify a scalar handle, but no property names, set returns a struct with one
field for each property in the class of H. Each field contains an empty cell array.

SV = set(h);

Class Derived from matlab.mixin.SetGet
This sample class defines a set/get interface and illustrates the behavior of the inherited
methods:

classdef LineType < matlab.mixin.SetGet
 properties
 Style = '-'
 Marker = 'o'
 end
 properties (SetAccess = protected)
 Units = 'points'
 end
 methods
 function obj = LineType(s,m)
 if nargin > 0
 obj.Style = s;
 obj.Marker = m;
 end

7 Value or Handle Class — Which to Use

7-30

 end
 function obj = set.Style(obj,val)
 if ~(strcmpi(val,'-') ||...
 strcmpi(val,'--') ||...
 strcmpi(val,'..'))
 error('Invalid line style ')
 end
 obj.Style = val;
 end
 function obj = set.Marker(obj,val)
 if ~isstrprop(val,'graphic')
 error('Marker must be a visible character')
 end
 obj.Marker = val;
 end
 end
end

Create an instance of the class and save its handle:

h = LineType('--','*');

Query the value of any object property using the inherited get method:

get(h,'Marker')

ans =

*

Set the value of any property using the inherited set method:

set(h,'Marker','Q')

Property Access Methods Called with set and get

MATLAB calls property access methods (set.Style or set.Marker in the LineType
class) when you use the set and get methods.

set(h,'Style','-.-')

Error using LineType>LineType.set.Style
Invalid line style

For more information on property access methods, see “Property Access Methods” on
page 8-52

 Implement Set/Get Interface for Properties

7-31

List All Properties

Return a struct containing object properties and their current values using get:

h = LineType('--','*');
SV = get(h)

SV =

 Style: '--'
 Marker: '*'
 Units: 'points'

Return a struct containing the properties that have public SetAccess using set:

S = set(h)

S =

 Style: {}
 Marker: {}

The LineType class defines the Units property with SetAccess = protected.
Therefore, S = set(h) does not create a field for Units in S.

set cannot return possible values for properties that have nonpublic set access.

Using get with Arrays of Handles

Suppose that you create an array of LineType objects:

H = [LineType('..','z'),LineType('--','q')]

H =

 1x2 LineType with properties:

 Style
 Marker
 Units

When H is an array of handles, get returns a (length(H)-by-1) cell array of property
values:

CV = get(H,'Style')

7 Value or Handle Class — Which to Use

7-32

CV =

 '..'
 '--'

When H is an array of handles and you do not specify a property name, get returns a
struct array containing fields with names corresponding to property-names. Assign the
output of get to a variable when H is not scalar.

SV = get(H)

SV =

2x1 struct array with fields:
 Style
 Marker
 Units

Get the value of the Marker property from the second array element in the SV array of
structures:

SV(2).Marker

ans =

q

Arrays of Handles, Names, and Values

You can pass an array of handles, a cell array of property names, and a cell array of
property values to set. The property value cell array must have one row of property
values for each object in H. Each row must have a value for each property in the property
name array:

H = [LineType('..','z'),LineType('--','q')];
set(H,{'Style','Marker'},{'..','o';'--','x'})

The result of this call to set is:

H(1)

ans =

 LineType with properties:

 Implement Set/Get Interface for Properties

7-33

 Style: '..'
 Marker: 'o'
 Units: 'points

H(2)

ans =

 LineType with properties:

 Style: '--'
 Marker: 'x'
 Units: 'points'

Customize the Property List

Customize the way property lists display by redefining the following methods in your
subclass:

• setdisp — When you call set with no output argument and a single scalar handle
input, set calls setdisp to determine how to display the property list.

• getdisp — When you call get with no output argument and a single scalar handle
input, get calls getdisp to determine how to display the property list.

See Also
get | set

More About
• “Ways to Use Properties” on page 8-2

7 Value or Handle Class — Which to Use

7-34

Implement Copy for Handle Classes
In this section...
“Copy Method for Handle Classes” on page 7-35
“Customize Copy Operation” on page 7-36
“Copy Properties That Contain Handles” on page 7-37
“Exclude Properties from Copy” on page 7-40

Copy Method for Handle Classes
Copying a handle variable results in another handle variable that refers to the same
object. You can add copy functionality to your handle class by subclassing
matlab.mixin.Copyable. The inherited copy method enables you to make shallow
copies of objects of the class. The CopyObj class shows the behavior of copy operations.

classdef CopyObj < matlab.mixin.Copyable
 properties
 Prop
 end
end

Create an object of the CopyObj class and assign the handle of a line object to the
property Prop.

a = CopyObj;
a.Prop = line;

Copy the object.

b = copy(a);

Confirm that the handle variables a and b refer to different objects.

a == b

ans =

 logical

 0

 Implement Copy for Handle Classes

7-35

However, the line object referred to by a.Prop has not been copied. The handle
contained in a.Prop refers to the same object as the handle contained in b.Prop.

a.Prop == b.Prop

ans =

 logical

 1

For more detailed information on the behavior of the copy operation, see
matlab.mixin.Copyable.copy.

Customize Copy Operation
Customize handle object copy behavior by deriving your class from
matlab.mixin.Copyable. The matlab.mixin.Copyable class is an abstract base
class that derives from the handle class. matlab.mixin.Copyable provides a template
for customizing object copy operations by defining:

• matlab.mixin.Copyable.copy — Sealed method that defines the interface for
copying objects

• matlab.mixin.Copyable.copyElement — Protected method that subclasses can
override to customize object copy operations for the subclass

The matlab.mixin.Copyable copy method, calls the copyElement method. Your
subclass customizes the copy operation by defining its own version of copyElement.

The default implementation of copyElement makes shallow copies of all the
nondependent properties. copyElement copies each property value and assigns it to the
new (copied) property. If a property value is a handle object, copyElement copies the
handle, but not the underlying data.

To implement different copy behavior for different properties, override copyElement. For
example, the copyElement method of the SpecializedCopy class:

• Creates a new class object
• Copies the value of Prop1 to the new object
• Reinitializes the default value of Prop2 by adding a timestamp when the copy is made

7 Value or Handle Class — Which to Use

7-36

classdef SpecializedCopy < matlab.mixin.Copyable
 properties
 Prop1
 Prop2 = datestr(now)
 end
 methods(Access = protected)
 function cp = copyElement(obj)
 cp = SpecializedCopy;
 cp.Prop1 = obj.Prop1;
 cp.Prop2 = datestr(now);
 end
 end
end

Create an object of the class and assign a value to Prop1:

a = SpecializedCopy;
a.Prop1 = 7

a =

 SpecializedCopy with properties:

 Prop1: 7
 Prop2: '17-Feb-2015 17:51:23'

Use the inherited copy method to create a copy of a:

b = copy(a)

b =

 SpecializedCopy with properties:

 Prop1: 7
 Prop2: '17-Feb-2015 17:51:58'

The copy (object b) has the same value for Prop1, but the subclass copyElement method
assigned a new value to Prop2. Notice the different timestamp.

Copy Properties That Contain Handles
Copying an object also copies the values of object properties. Object properties can
contain other objects, including handle objects. If you simply copy the value of a property

 Implement Copy for Handle Classes

7-37

that contains a handle object, you are actually copying the handle, not the object itself.
Therefore, your copy references the same object as the original object. Classes that
derive from the matlab.mixin.Copyable class can customize the way the copy method
copies objects of the class.

Class to Support Handle Copying

Suppose that you define a class that stores a handle in an object property. You want to be
able to copy objects of the class and want each copy of an object to refer to a new handle
object. Customize the class copy behavior using these steps:

• Create a subclass of matlab.mixin.Copyable.
• Override copyElement to control how the property containing the handle is copied.
• Because the property value is a handle, create a new default object of the same class.
• Copy property values from the original handle object to the new handle object.

The “HandleCopy” on page 7-39 class customizes copy operations for the property that
contains a handle object. The “ColorProp” on page 7-39 class defines the handle object
to assign to Prop2:

Create an object and assign property values:

a = HandleCopy;
a.Prop1 = 7;
a.Prop2 = ColorProp;

Make a copy of the object using the copy method inherited from
matlab.mixin.Copyable:

b = copy(a);

Demonstrate that the handle object contained by object a and b are independent.
Changing the value on object a does not affect object b:

a.Prop2.Color = 'red';
b.Prop2.Color

ans =

blue

7 Value or Handle Class — Which to Use

7-38

HandleCopy

The HandleCopy class customizes the copy operation for objects of this class.

classdef HandleCopy < matlab.mixin.Copyable
 properties
 Prop1 % Shallow copy
 Prop2 % Handle copy
 end
 methods (Access = protected)
 function cp = copyElement(obj)
 % Shallow copy object
 cp = copyElement@matlab.mixin.Copyable(obj);
 % Get handle from Prop2
 hobj = obj.Prop2;
 % Create default object
 new_hobj = eval(class(hobj));
 % Add public property values from orig object
 HandleCopy.propValues(new_hobj,hobj);
 % Assign the new object to property
 cp.Prop2 = new_hobj;
 end
 end
 methods (Static)
 function propValues(newObj,orgObj)
 pl = properties(orgObj);
 for k = 1:length(pl)
 if isprop(newObj,pl{k})
 newObj.(pl{k}) = orgObj.(pl{k});
 end
 end
 end
 end
end

ColorProp

The ColorProp class defines a color by assigning an RGB value to its Color property.

classdef ColorProp < handle
 properties
 Color = 'blue';
 end
end

 Implement Copy for Handle Classes

7-39

Exclude Properties from Copy
Use the NonCopyable property attribute to indicate that you do not want a copy
operation to copy a particular property value. By default, NonCopyable is false,
indicating that the property value is copyable. You can set NonCopyable to true only on
properties of handle classes.

For classes that derive from matlab.mixin.Copyable, the default implementation of
copyElement honors the NonCopyable attribute. Therefore, if a property has its
NonCopyable attribute set to true, then copyElement does not copy the value of that
property. If you override copyElement in your subclass, you can choose how to use the
NonCopyable attribute.

Set the Attribute to Not Copy

Set NonCopyable to true in a property block:

properties (NonCopyable)
 Prop1
end

Default Values

If a property that is not copyable has a default value assigned in the class definition, the
copy operation assigns the default value to the property. For example, the CopiedClass
assigns a default value to Prop2.

classdef CopiedClass < matlab.mixin.Copyable
 properties (NonCopyable)
 Prop1
 Prop2 = datestr(now) % Assign current time
 end
end

Create an object to copy and assign a value to Prop1:

a = CopiedClass;
a.Prop1 = 7

a =

 CopiedClass with properties:

7 Value or Handle Class — Which to Use

7-40

 Prop1: 7
 Prop2: '17-Feb-2015 15:19:34'

Copy a to b using the copy method inherited from matlab.mixin.Copyable:

b = copy(a)

b =

 CopiedClass with properties:

 Prop1: []
 Prop2: '17-Feb-2015 15:19:34'

In the copy b, the value of Prop1 is not copied. The value of Prop2 is set to its default
value, which MATLAB determined when first loading the class. The timestamp does not
change.

Objects with Dynamic Properties

Subclasses of the dynamicprops class allow you to add properties to an object of the
class. When a class derived from dynamicprops is also a subclass of
matlab.mixin.Copyable, the default implementation of copyElement does not copy
dynamic properties. The default value of NonCopyable is true for dynamic properties.

The default implementation of copyElement honors the value of a dynamic property
NonCopyable attribute. If you want to allow copying of a dynamic property, set its
NonCopyable attribute to false. Copying a dynamic property copies the property value
and the values of the property attributes.

For example, this copy operation copies the dynamic property, DynoProp, because its
NonCopyable attribute is set to false. The object obj must be an instance of a class
that derives from both dynamicprops and matlab.mixin.Copyable:

obj = MyDynamicClass;
p = addprop(obj,'DynoProp');
p.NonCopyable = false;
obj2 = copy(obj);

See Also
matlab.mixin.Copyable

 See Also

7-41

Related Examples
• “Dynamic Properties — Adding Properties to an Instance” on page 8-71

7 Value or Handle Class — Which to Use

7-42

Properties — Storing Class Data

• “Ways to Use Properties” on page 8-2
• “Property Syntax” on page 8-5
• “Property Attributes” on page 8-9
• “Property Definition” on page 8-17
• “Mutable and Immutable Properties” on page 8-24
• “Validate Property Values” on page 8-26
• “Property Class and Size Validation” on page 8-33
• “Property Validation Functions” on page 8-42
• “Metadata Interface to Property Validation” on page 8-50
• “Property Access Methods” on page 8-52
• “Property Set Methods” on page 8-58
• “Property Get Methods” on page 8-62
• “Set and Get Methods for Dependent Properties” on page 8-64
• “Properties Containing Objects” on page 8-68
• “Dynamic Properties — Adding Properties to an Instance” on page 8-71
• “Set and Get Methods for Dynamic Properties” on page 8-75
• “Dynamic Property Events” on page 8-77
• “Dynamic Properties and ConstructOnLoad” on page 8-82

8

Ways to Use Properties

In this section...
“What Are Properties” on page 8-2
“Types of Properties” on page 8-3

What Are Properties
Properties encapsulate the data that belongs to instances of classes. Data contained in
properties can be public, protected, or private. This data can be a fixed set of constant
values, or it can depend on other values and calculated only when queried. You control
these aspects of property behaviors by setting property attributes and by defining
property-specific access methods.

Flexibility of Object Properties

In some ways, properties are like fields of a struct object. However, storing data in an
object property provides more flexibility. Properties can:

• Define a constant value that you cannot change outside the class definition. See
“Define Class Properties with Constant Values” on page 15-2.

• Calculate its value based on the current value of other data. See “Property Get
Methods” on page 8-62.

• Execute a function to determine if an attempt to assign a value meets a certain
criteria. See “Property Set Methods” on page 8-58.

• Trigger an event notification when any attempt is made to get or set its value. See
“Property-Set and Query Events” on page 11-17.

• Control access by code to the property values. See the SetAccess and GetAccess
attributes “Property Attributes” on page 8-9.

• Control whether its value is saved with the object in a MAT-file. See “Save and Load
Objects” on page 13-2.

For an example of a class that defines and uses a class, see “Create a Simple Class” on
page 2-2.

8 Properties — Storing Class Data

8-2

Types of Properties
There are two types of properties:

• Stored properties — Use memory and are part of the object
• Dependent properties — No allocated memory and the get access method calculates

the value when queried

Features of Stored Properties

• Property value is stored when you save the object to a MAT-file
• Can assign a default value in the class definition
• Can restrict property value to a specific class and size
• Can execute validation functions to control allowed property value (default and

assigned)
• Can use a set access method to control possible values when set

When to Use Stored Properties

• You want to be able to save the property value in a MAT-file
• The property value is not dependent on other property values

Features of Dependent Properties

Dependent properties save memory because property values that depend on other values
are calculated only when needed.

When to Use Dependent Properties

Define properties as dependent when you want to:

• Compute the value of a property from other values (for example, you can compute
area from Width and Height properties).

• Provide a value in different formats depending on other values. For example, the size
of a push button in values determined by the current setting of its Units property.

• Provide a standard interface where a particular property is or is not used, depending
on other values. For example, different computer platforms can have different
components on a toolbar).

 Ways to Use Properties

8-3

For examples of classes that use dependent properties, see “Calculate Data on Demand”
on page 3-23 and “A Class Hierarchy for Heterogeneous Arrays” on page 21-2.

See Also

Related Examples
• “Property Attributes” on page 8-9
• “Validate Property Values” on page 8-26
• “Property Access Methods” on page 8-52
• “Static Properties” on page 5-67

8 Properties — Storing Class Data

8-4

Property Syntax

In this section...
“Property Definition Block” on page 8-5
“Access Property Values” on page 8-6
“Inheritance of Properties” on page 8-7
“Specify Property Attributes” on page 8-7

Property Definition Block
The following illustration shows a typical property specification. The properties and
end keywords delineate a block of code that defines properties having the same attribute
settings.

Property name

properties block

properties keyword begins de!nition block.

end keyword terminates de!nition block.

properties

 Coefficients = [0 0 1]

end

Default value

(SetAccess = protected)

Attribute speci!cation

Note Properties cannot have the same name as the class.

 Property Syntax

8-5

For an example, see “Create a Simple Class” on page 2-2.

Assigning a Default Value

The preceding example shows the Coefficients property specified as having a default
value of [0 0 1].

You can initialize property values with MATLAB expressions. However, these expressions
cannot refer to the class that you are defining in any way, except to call class static
methods. MATLAB executes expressions that create initial property values only when
initializing the class, which occurs just before first using the class. See “Property Default
Values” on page 8-18 for more information about how MATLAB evaluates default value
expressions.

Define One Property Per Line

Property names must be listed on separate lines. MATLAB interprets a name following a
property name as the name of a class.

Restrict Property Values

You can restrict property values by associating a class with the property in the property
definition. For example, the definition of MyData requires that values assigned to this
property must be of type int32 or types that are compatible with int32.

properties
 MyData int32
end

For more information, see “Validate Property Values” on page 8-26.

Access Property Values
Property access syntax is like MATLAB structure field syntax. For example, if obj is an
object of a class, then you can get the value of a property by referencing the property
name:

val = obj.PropertyName

Assign values to properties by putting the property reference on the left side of the equal
sign:

obj.PropertyName = val

8 Properties — Storing Class Data

8-6

When you access a property, MATLAB executes any property set or get access method
and triggering any enabled property events.

Inheritance of Properties
When you derive one class from another class, the derived (subclass) class inherits all the
properties of the superclass. In general, subclasses define only properties that are unique
to that particular class. Superclasses define properties that are used by more than one
subclass.

Specify Property Attributes
Attributes specified with the properties keyword apply to all property definitions that
follow in that block. If you want to apply attribute settings to certain properties only,
reuse the properties keyword and create another property block for those properties.

For example, the following code shows the SetAccess attribute set to private for the
IndependentVar and Order properties, but not for the Coefficients property:

properties

 Coefficients = [0 0 1];

end

properties (SetAccess = private)

 IndependentVar

 Order = 0

end

These properties (and any others placed in

this block) have private set access

For information about the properties of a specific class, use the properties function.

 Property Syntax

8-7

See Also

Related Examples
• “Validate Property Values” on page 8-26
• “Property Definition” on page 8-17
• “Property Attributes” on page 8-9

8 Properties — Storing Class Data

8-8

Property Attributes

In this section...
“Purpose of Property Attributes” on page 8-9
“Specifying Property Attributes” on page 8-9
“Table of Property Attributes” on page 8-9

Purpose of Property Attributes
Specifying attributes in the class definition enables you to customize the behavior of
properties for specific purposes. Control characteristics like access, data storage, and
visibility of properties by setting attributes. Subclasses do not inherit superclass member
attributes.

Specifying Property Attributes
Assign property attributes on the same line as the properties keyword:

properties (Attribute1 = value1, Attribute2 = value2,...)
 ...
end

For example, give the Data property private access:

properties (Access = private)
 Data
end

For more information on attribute syntax, see “Attribute Specification” on page 5-22.

Table of Property Attributes
All properties support the attributes listed in the following table. Attribute values apply to
all properties defined within the properties...end code block that specifies the
nondefault values.

 Property Attributes

8-9

Property Attributes

Attribute Name Class Description
AbortSet logical

default = false

If true, MATLAB does not set the
property value if the new value is the
same as the current value. MATLAB does
not call the property set method, if one
exists.

For handle classes, setting AbortSet to
true also prevent the triggering of
property PreSet and PostSet events.

See “Assignment When Property Value Is
Unchanged” on page 11-44

Abstract logical

default = false

If true, the property has no
implementation, but a concrete subclass
must redefine this property without
Abstract being set to true.

• Abstract properties cannot define set
or get access methods. See “Property
Access Methods” on page 8-52.

• Abstract properties cannot define
initial values. See “Assigning a Default
Value” on page 8-6.

• All subclasses must specify the same
values as the superclass for the
property SetAccess and GetAccess
attributes.

• Abstract=true use with the class
attribute Sealed=false (the default).

8 Properties — Storing Class Data

8-10

Attribute Name Class Description
Access (write only, cannot
query this meta.property
property. Use GetAccess
and SetAccess in queries.)

• enumeration, default =
public

• meta.class object
• cell array of

meta.class objects

Use Access to set both SetAccess and
GetAccess to the same value. Query the
values of SetAccess and GetAccess
directly (not Access).

public – unrestricted access

protected – access from class or
subclasses

private – access by class members only
(not subclasses)

List of classes that have get and set
access to this property. Specify classes as
meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects.

An empty cell array, {}, is the same as
private access.

See “Class Members Access” on page 12-
28

Constant logical

default = false

Set to true if you want only one value for
this property in all instances of the class:

• Subclasses inherit constant properties,
but cannot change them.

• Constant properties cannot be
Dependent.

• SetAccess is ignored.

See “Define Class Properties with
Constant Values” on page 15-2 for more
information.

 Property Attributes

8-11

Attribute Name Class Description
Dependent logical

default = false

If false, property value is stored in
object. If true, property value is not
stored in object. The set and get functions
cannot access the property by indexing
into the object using the property name.

MATLAB does not display in the command
window the names and values of
Dependent properties that do not define
a get method (scalar object display only).

Values returned by dependent property
get methods are not considered when
testing for object equality using isequal.

• “Calculate Data on Demand” on page
3-23

• “Property Get Methods” on page 8-62
• “Avoid Property Initialization Order

Dependency” on page 13-12

8 Properties — Storing Class Data

8-12

Attribute Name Class Description
GetAccess enumeration

default = public

public — unrestricted access

protected — access from class or
subclasses

private — access by class members only
(not from subclasses)

List classes that have get access to this
property. Specify classes as meta.class
objects in the form:

• A single meta.class object
• A cell array of meta.class objects.

An empty cell array, {}, is the same as
private access.

See “Class Members Access” on page 12-
28

MATLAB does not display in the command
window the names and values of
properties having protected or
private GetAccess or properties whose
Hidden attribute is true.

The struct function defines fields for all
properties when converting objects to
structs.

GetObservable logical

default = false

If true, and it is a handle class property,
then you can create listeners for access to
this property. The listeners are called
whenever property values are queried.
See “Property-Set and Query Events” on
page 11-17

 Property Attributes

8-13

Attribute Name Class Description
Hidden logical

default = false

Determines if the property can be shown
in a property list (e.g., Property Inspector,
call to set or get, etc.).

MATLAB does not display in the command
window the names and values of
properties whose Hidden attribute is
true or properties having protected or
private GetAccess.

NonCopyable logical

default = false

Determine if property value can be copied
when object is copied.

You can set NonCopyable to true only in
handle classes.

For more information, see “Exclude
Properties from Copy” on page 7-40

8 Properties — Storing Class Data

8-14

Attribute Name Class Description
SetAccess enumeration

default = public

public — unrestricted access

protected — access from class or
subclasses

private — access by class members only
(not from subclasses)

immutable — property can be set only in
the constructor.

See “Mutable and Immutable Properties”
on page 8-24

List classes that have set access to this
property. Specify classes as meta.class
objects in the form:

• A single meta.class object
• A cell array of meta.class objects.

An empty cell array, {}, is the same as
private access.

See “Class Members Access” on page 12-
28

SetObservable logical

default = false

If true, and it is a handle class property,
then you can create listeners for access to
this property. The listeners are called
whenever property values are modified.
See “Property-Set and Query Events” on
page 11-17

Transient logical

default = false

If true, property value is not saved when
object is saved to a file. See “Save and
Load Process for Objects” on page 13-2
for more about saving objects.

Framework attributes Classes that use certain framework base classes have framework-
specific attributes. See the documentation for the specific base class
you are using for information on these attributes.

 Property Attributes

8-15

See Also

Related Examples
• “Property Definition” on page 8-17

8 Properties — Storing Class Data

8-16

Property Definition
In this section...
“What You Can Define” on page 8-17
“Initialize Property Values” on page 8-18
“Property Default Values” on page 8-18
“Initializing Properties to Handle Objects” on page 8-19
“Assign Property Values in Constructor” on page 8-19
“Property Attributes” on page 8-21
“Property Access Methods” on page 8-21
“Reference Object Properties Using Variables” on page 8-22

What You Can Define
Control aspects of property definitions in the following ways:

• Specify a default value for each property individually, see “Property Default Values” on
page 8-18.

• Assign property values in a class constructor, see “Assign Property Values in
Constructor” on page 8-19.

• Define properties with constant values, see “Named Values” on page 14-2.
• Assign property attribute values on a per block basis, see “Property Attributes” on

page 8-21.
• Define methods that execute when the property is set or queried, see “Property Access

Methods” on page 8-21.
• Define the class and size of property values, see “Validate Property Values” on page 8-

26.
• Define properties that do not store values, but whose values depend on other

properties, see “Types of Properties” on page 8-3.

Note Properties cannot have the same name as the class.

Note Always use case-sensitive property names in your MATLAB code.

 Property Definition

8-17

Initialize Property Values
There are two basic approaches to initializing property values:

• In the property definition — MATLAB evaluates the expression only once and assigns
the same value to the property of every instance.

• In a class constructor — MATLAB evaluates the assignment expression for each
instance, which ensures that each instance has a unique value.

For more information on the evaluation of expressions that you assign as property default
values, see “When MATLAB Evaluates Expressions” on page 6-13.

Property Default Values
Within a properties block, you can control an individual property's default value.
Assign default values as a value or MATLAB expressions. Expressions cannot reference
variables. For example:

• Prop1 — No assignment results in empty [] default value
• Prop2 — Assign character array as default value
• Prop3 — Assign result of expression as default value
• Prop4 — Assign the same instance of a handle class to Prop4 for all instances of this

class
• Prop5 — Assign a default value that satisfies the specified restrictions of scalar

positive double.

classdef ClassName
 properties
 Prop1
 Prop2 = 'some text'
 Prop3 = sin(pi/12)
 Prop4 = containers.Map
 Prop5 (1,1) double {mustBePositive} = 1
 end
end

If the class definition does not specify a default property value, MATLAB initializes the
property value to empty double ([]). If the class specifies any class, size, or validation
function restrictions on the property value, then the class must ensure that the default

8 Properties — Storing Class Data

8-18

value satisfies those restrictions by assigning a valid value when an empty value is
invalid.

Note Evaluation of property default values occurs only when the value is first needed,
and only once when MATLAB first initializes the class. MATLAB does not reevaluate the
expression each time you create an instance of the class.

For more information on the evaluation of expressions that you assign as property default
values, see “Evaluation of Expressions in Class Definitions” on page 6-10 and “Properties
Containing Objects” on page 8-68.

For information on class, size, and validation functions used in property definitions, see
“Validate Property Values” on page 8-26.

Initializing Properties to Handle Objects
MATLAB assigns the specified default values to properties only once when MATLAB loads
the class definition. If you use a handle class constructor to create a property default
value, MATLAB calls the constructor only when the class is first used, and then uses the
same object handle as the default for the property in all objects created. Because all of
the object handles reference the same object, any changes you make to the handle object
in one instance are made to the handle object in all instances.

If you want a property value to be initialized to a new instance of a handle object each
time you create an object of your class, assign the property value in the constructor.

Assign Property Values in Constructor
To assign values to a property from within the class constructor, refer to the object that
the constructor returns (the output variable obj) and the property name using dot
notation:

classdef MyClass
 properties
 Prop1
 end
 methods
 function obj = MyClass(intval)
 % Initialize Prop1 for each instance

 Property Definition

8-19

 obj.Prop1 = intval;
 end
 end
end

When you assign a property in the class constructor, MATLAB evaluates the assignment
statement for each object you create. Assign property values in the constructor if you
want each object to contain a unique value for that property.

For example, suppose that you want to assign a unique handle object to the property of
another object each time you create one of the other objects. Assign the handle object to
the property in the constructor. Call the handle object constructor to create a unique
handle object with each instance of your class.

classdef ContainsHandle
 properties
 Prop1
 end
 methods
 function obj = ContainsHandle(keySet,valueSet)
 obj.Prop1 = MyHandleClass(keySet,valueSet);
 end
 end
end

For more information on constructor methods, see “Referencing the Object in a
Constructor” on page 9-26.

Default Values Evaluated Before Constructing Object

MATLAB validates property default values before the assignment of values in the
constructor. It is necessary for the default value assigned in the properties block and
the property value set in a class constructor to satisfy the specified validation. For
example, this class restricts Prop to a scalar positive double, but does not assign a valid
default value. By default, MATLAB assigns a default value of empty double, which causes
a run-time error.
classdef PropInit
 properties
 % Error without valid default value
 Prop (1,1) double {mustBePositive}
 % Empty default fails mustBePositive
 end
 methods
 function obj = PropInit(positiveInput)
 obj.Prop = positiveInput;
 end

8 Properties — Storing Class Data

8-20

 end
end

Calling the class constructor with a valid value for Prop results in an error from the
validation function mustBePositive.

obj = PropInit(2);

Error using implicit default value of property 'Prop' of class 'PropInit':
Value must be positive.

Property Attributes
All properties have attributes that modify certain aspects of the property's behavior.
Specified attributes apply to all properties in a particular properties block. For example:
classdef ClassName
 properties (PropertyAttribute = value)
 Prop1
 Prop2
 end
end

For example, only methods in the same class definition can modify and query the Salary
and Password properties.

classdef EmployeeInfo
 properties (Access = private)
 Salary
 Password
 end
end

This restriction exists because the class defines these properties in a properties block
with the Access attribute set to private.

Property Attributes

For a description of property attributes you can specify, see, “Property Attributes” on
page 8-9.

Property Access Methods
MATLAB calls whenever setting or querying a property value. Define property set access
or get access methods in methods blocks that specify no attributes and have the
following syntax:

 Property Definition

8-21

methods

 function obj = set.PropertyName(obj,value)
 ...
 end

 function value = get.PropertyName(obj)
 ...
 end

end

MATLAB does not call the property set access method when assigning the default value
specified in the property's definition block.

For example, the set.Password method tests the length of the character array assigned
to a property named Password. If there are fewer than seven characters in the value
assigned to the property, MATLAB returns the error. Otherwise, MATLAB assigns the
specified value to the property.

function obj = set.Password(obj,pw)
 if numel(pw) < 7
 error('Password must have at least 7 characters')
 else
 obj.Password = pw;
end

For more information on property access methods, see “Property Access Methods” on
page 8-52.

Reference Object Properties Using Variables
MATLAB can resolve a property name from a char variable using an expression of the
form:

object.(PropertyNameVar)

where PropertyNameVar is a variable containing the name of a valid object property.
Use this syntax when passing property names as arguments. For example, the
getPropValue function returns the value of the KeyType property:

PropName = 'KeyType';
function o = getPropValue(obj,PropName)

8 Properties — Storing Class Data

8-22

 o = obj.(PropName);
end

See Also

Related Examples
• “Evaluation of Expressions in Class Definitions” on page 6-10
• “Ways to Use Properties” on page 8-2
• “Validate Property Values” on page 8-26

 See Also

8-23

Mutable and Immutable Properties
In this section...
“Set Access to Property Values” on page 8-24
“Define Immutable Property” on page 8-24

Set Access to Property Values
The property SetAccess attribute enables you to determine under what conditions code
can modify object property values. There are four levels of set access that provide varying
degrees of access to object property values:

• SetAccess = public — Any code with access to an object can set public property
values. There are differences between the behavior of handle and value classes with
respect to modifying object properties.

• SetAccess = protected — Only code executing from within class methods or
methods of subclasses can set property values. You cannot change the value of an
object property unless the class or any of its subclasses defines a method to do so.

• SetAccess = private — Only the defining class can set property values. You can
change the value of an object property only if the class defines a method that sets the
property.

• SetAccess = immutable — Property value is set during construction. You cannot
change the value of an immutable property after the object is created. Set the value of
the property as a default or in the class constructor.

Define Immutable Property
In this class definition, only the Immute class constructor can set the value of the
CurrentDate property:

classdef Immute
 properties (SetAccess = immutable)
 CurrentDate
 end
 methods
 function obj = Immute
 obj.CurrentDate = date;
 end

8 Properties — Storing Class Data

8-24

 end
end

a = Immute

a =

 Immute with properties:

 CurrentDate: '19-Oct-2005'

See Also

Related Examples
• “Property Attributes” on page 8-9
• “Object Modification” on page 5-63

 See Also

8-25

Validate Property Values
In this section...
“Property Validation in Class Definitions” on page 8-26
“Sample Class Using Property Validation” on page 8-28
“Order of Validation” on page 8-29
“Abstract Property Validation” on page 8-30
“Objects Not Updated When Changing Validation” on page 8-30
“Validation During Load Operation” on page 8-31

Property Validation in Class Definitions
MATLAB property validation enables you to place specific restrictions on property values.
You can use validation to constrain the class and size of property values. Also, you can use
functions to establish criteria that the property value must conform to. MATLAB defines a
set of validation functions and you can write your own validation functions.

The use of property validation is optional in class definitions.

Additional Information on Property Validation

For more information on property validation, see “Property Class and Size Validation” on
page 8-33, “Property Validation Functions” on page 8-42, and “Metadata Interface to
Property Validation” on page 8-50.

Validation Syntax

The highlighted area in the following code shows the syntax for property validation.

8 Properties — Storing Class Data

8-26

Property validation includes any of the following:

• Size — The length of each dimension, specified as a positive integer or a colon. A colon
indicates that any length is allowed in that dimension. The value assigned to the
property must conform to the specified size or be compatible with the specified size.
For more information, see “Property Size Validation” on page 8-33.

• Class — The name of a single MATLAB class. The value assigned to the property must
be of the specified class or convertible to the specified class. Use any MATLAB class or
externally defined class that is supported by MATLAB, except for Java and COM
classes. For more information, see “Property Class Validation” on page 8-35.

• Functions — A comma-separated list of validation function names. MATLAB passes the
value assigned to the property to each the validation functions after applying any
possible class and size conversions. Validator functions throw errors if the validation
fails, but do not return values. For more information, see “Property Validation
Functions” on page 8-42.

For a list of MATLAB validation functions, see “MATLAB Validation Functions” on page
8-45.

Using Property Validation

Use property validation for public properties to control the values user code assigns to
the properties.

If you want to restrict property values to a fixed set of identifiers, create an enumeration
class for these identifiers and constrain the property to this class. For information on
enumeration classes, see “Define Enumeration Classes” on page 14-5.

MATLAB type conversion rules apply to property validation. For example, MATLAB can
coerce from one to another numeric type. Therefore, restricting a property value to a
specific numeric type, such as double does not prevent the assignment of other numeric
types to the property.

To ensure that a property can be assigned only a specific type of value, restrict the
property to a type that supports only the desired type conversions or use a validation
function to specify the exact class allowed for the property instead of specifying the
property type. MATLAB evaluates the type specification before executing any validation
functions. For more information, see “Order of Validation” on page 8-29.

 Validate Property Values

8-27

Specify Valid Default

Ensure that any default value assigned to the property meets the restrictions imposed by
the specified validation. If you do not specify a default value, MATLAB creates a default
value by assigning an empty object of the specified class or by calling the default
constructor if size restriction does not allow the use of an empty default value. The
default constructor must return an object of the correct size.

Sample Class Using Property Validation
The ValidateProps class defines three properties with validation.
classdef ValidateProps
 properties
 Location(1,3) double {mustBeReal, mustBeFinite}
 Label(1,:) char {mustBeMember(Label,{'High','Medium','Low'})} = 'Low'
 State(1,1) matlab.lang.OnOffSwitchState
 end
end

• Location must be a 1-by-3 array of class double whose values are real, finite
numbers.

• Label must be a char vector that is either 'High', 'Medium', or 'Low'.
• State must be an enumeration member of the matlab.lang.OnOffSwitchState

class (off or on).

Validation at Instantiation

Creating an object of the ValidateProps class performs the validation on implicit and
explicit default values:

a = ValidateProps

a =

 ValidateProps with properties:

 Location: [0 0 0]
 Label: 'Low'
 State: off

When creating the object, MATLAB:

8 Properties — Storing Class Data

8-28

• Initializes the Location property value to [0 0 0] to satisfy the size and class
requirements.

• Sets the Label property to its default value, 'Low'. The default value must be a
member of the allowed set of values. The empty char implicit default value would
cause an error.

• Sets the State property to the off enumeration member defined by the
matlab.lang.OnOffSwitchState class.

For information on how MATLAB selects default values, see “Default Values Per Size and
Class” on page 8-39.

Order of Validation
When a value is assigned to the property, including default values that are specified in the
class definition, MATLAB performs validation in this order:

• Class validation — This validation can cause conversion to a different class, such as
conversion of a char to string. Assignment to properties follows MATLAB coercion
rules for arrays.

• Size validation — This validation can cause size conversion, such as scalar expansion
or conversion of a column vector to a row vector. Assignment to a property that
specifies a size validation behaves the same as assignment to any MATLAB array. For
information on indexed assignment, see “Array Indexing”.

• Validator functions — MATLAB passes the result of the class and size validation to
each validation function, in left to right order. An error can occur before all validation
functions have been called, which ends the validation process.

• Set method — MATLAB performs property validation before calling a property set
method, if one is defined for that property. Assignment to the property within a
property set or get method does not apply the validation again. Often, you can replace
property set methods using property validation.

Property Validation Errors

The ValueProp class uses size, class, and function validation to ensure that an
assignment to the Value property is a double scalar that is not negative.

classdef ValueProp
 properties
 Value(1,1) double {mustBeNonnegative} = 0

 Validate Property Values

8-29

 end
end

This statement attempts to assign a cell array to the property. This assignment violates
the class validation.

a.Value = {10,20};

Error setting property 'Value' of class 'ValueProp':
Invalid data type. Value must be double or be convertible to double.

This statement attempts to assign a 1-by-2 double array to the property. This assignment
violates the size validation.

a.Value = [10 20];

Error setting property 'Value' of class 'ValueProp':
Size of value must be scalar.

This statement attempts to assign a scalar double to the property. This assignment fails
the function validation, which requires a nonnegative number.

a.Value = -10;

Error setting property 'Value' of class 'ValueProp':
Value must be nonnegative.

The validation process ends with the first error encountered.

Abstract Property Validation
You can define property validation for abstract properties. The validation applies to all
subclasses that implement the property. However, subclasses cannot use any validation on
their implementation of the property. When inheriting validation for a property from
multiple classes, only a single Abstract property in one superclass can define the
validation. None of the superclasses can define the property as nonAbstract.

Objects Not Updated When Changing Validation
If you change the property validation while objects of the class exist, MATLAB does not
attempt to apply the new validation to existing property values. However, MATLAB does
apply the new validation when you make assignments to the properties of existing
objects.

8 Properties — Storing Class Data

8-30

Validation During Load Operation
When saving an object to a MAT file, MATLAB saves all nondefault property values with
the object. When loading the object, MATLAB restores these property values in the newly
created object.

If a class definition changes the property validation such that the loaded property value is
no longer valid, MATLAB substitutes the currently defined default value for that property.
However, the load function suppresses the validation errors that occur before assigning
the default value from the current class definition. Therefore, validation errors are
silently ignored during load operations.

To illustrate this behavior, this example creates, saves, and loads an object of the
MonthTemp class. This class restricts the AveTemp property to a cell array.

classdef MonthTemp
 properties
 AveTemp cell
 end
end

Create a MonthTemp object and assign a value to the AveTemp property.

a = MonthTemp;
a.AveTemp = {'May',70};

Save the object using save.

save TemperatureFile a

Edit the property definition to change the validation class for the AveTemp property from
cell array to containers.Map.

classdef MonthTemp
 properties
 AveTemp containers.Map
 end
end

Load the saved object with the new class definition on the MATLAB path. MATLAB cannot
assign the saved value to the AveTemp property because the cell array, {'May',70}, is
not compatible with the current requirement that the property value be a
containers.Map object. MATLAB cannot convert a cell array to a containers.Map.

 Validate Property Values

8-31

To address the incompatibility, MATLAB sets the AveTemp property of the loaded object to
the current default value, which is an empty containers.Map object.

load TemperatureFile a
 a.AveTemp

ans =

 Map with properties:

 Count: 0
 KeyType: char
 ValueType: any

The loaded object has a different value assigned to the AveTemp property because the
saved value is now invalid. However, the load process suppresses the validation error.

To prevent loss of data when changing class definitions and reloading objects, implement
a loadobj method or class converter method that enables the saved values to satisfy the
current property validation.

For more information on saving and loading objects, see “Save and Load Process for
Objects” on page 13-2.

See Also

Related Examples
• “Property Class and Size Validation” on page 8-33
• “Property Validation Functions” on page 8-42

8 Properties — Storing Class Data

8-32

Property Class and Size Validation
In this section...
“Property Class and Size” on page 8-33
“Property Size Validation” on page 8-33
“Property Class Validation” on page 8-35
“Default Values Per Size and Class” on page 8-39

Property Class and Size
MATLAB applies any class and size validation defined for a property before calling
validation functions. Assignment to a property that defines size or class validation is
analogous to assignment to a MATLAB object array. MATLAB can apply class and size
conversions to the right side of the assignment to satisfy class and size validation.

For more information, see “Order of Validation” on page 8-29 and “Property Validation
Functions” on page 8-42.

Property Size Validation
Specify the property size as the row, column, and additional dimension following the
property name. Size validation does not support scientific notation.

classdef MyClass
 properties
 Prop(dim1,dim2,...) = defaultValue
 end
end

Assignment and Size Validation

This class defines the size of the Location property as 1-by-3. Any value assigned to this
property must conform to that size or must be convertible to that size.

classdef ValidateProps
 properties
 Location(1,3)
 end
end

 Property Class and Size Validation

8-33

The implicit default value assigned by MATLAB, [0 0 0], conforms to the specified size:

a = ValidateProps

a =

 ValidateProps with properties:

 Location: [0 0 0]

MATLAB applies scalar expansion when you assign a scalar the Location property.

a = ValidateProps;
a.Location = 1

a =

 ValidateProps with properties:

 Location: [1 1 1]

MATLAB converts columns to rows to match the size specification:

col = [1;1;1]

col =

 1
 1
 1

a.Location = col

a =

 ValidateProps with properties:

 Location: [1 1 1]

Colon in Size Specification

A colon in the size specification indicates that the corresponding dimension can have any
length. For example, you can assign a value of any length to the Label property in this
class.

classdef ValidateProps
 properties

8 Properties — Storing Class Data

8-34

 Label(1,:)
 end
end

a = ValidateProps;
a.Label = 'Click to Start'

a =

 ValidateProps with properties:

 Label: 'Click to Start'

Assignment to a property that defines size validation follows the same rules as the
equivalent indexed array assignment. For information on indexing behavior of
multidimensional arrays, see “Compatible Array Sizes for Basic Operations”.

Property Class Validation
Defining the class of a property can reduce the need to test the values assigned to the
property in your code. Any value assigned to the property must be of the specified class
or convertible to the specified class.

You can specify only one class per property. Use validation functions like mustBeNumeric
or mustBeInteger to restrict properties to a broader category of classes. For more
information on validation functions, see “Property Validation Functions” on page 8-42.

You can use any MATLAB class or externally defined class that is supported by MATLAB,
except Java and COM classes.

Place the name of the class in the property definition block following the property name
and optional size specification.

classdef MyClass
 properties
 Prop ClassName = defaultValue
 end
end

If you do not specify a default value, MATLAB assigns an empty object of the specified
class to the property. If you define a size and a class, MATLAB attempts to create a default
value for the property that satisfies both the size and class requirement.

 Property Class and Size Validation

8-35

MATLAB creates the default value by calling the class constructor with no arguments.
The class must have a constructor that returns an object of the specified size when called
with no input arguments or you must specify a default value for the property that satisfies
the property size restriction. For more information, see “Default Values Per Size and
Class” on page 8-39.

Using Class Validation

The PropsWithClass class defines two properties with class definitions:

• Number — Values must be of class double or convertible to double.
• Today — Values must be of class char or convertible to char. The default value is the

char vector returned by the date function.

classdef PropsWithClass
 properties
 Number double
 Today char = date
 end
end

Create an object of the PropsWithClass class.

p = PropsWithClass

p =

 PropsWithClass with properties:

 Number: []
 Today: '10-Sep-2016'

MATLAB performs conversions from any compatible class to the property class. For
example, assign a datetime array to the Today property.

p.Today = [datetime('now'),datetime('tomorrow')];
disp(class(p.Today))

ans =

char

Because the datetime class has a char converter, you can assign a datetime array to
the Today property.

8 Properties — Storing Class Data

8-36

Assigning an incompatible value to a property that uses class validation causes an error.

p.Number = datetime('now');

Error setting property 'Number' of class 'PropsWithClass':
Invalid data type. Value must be double or be convertible to double.

User-Defined Class for Validation

You can define a class to control the values assigned to a property. Enumeration classes
enable users to set property values to character vectors or string scalars with inexact
name matching.

For example, suppose that there is a class that represents a three-speed mechanical
pump. You can define an enumeration class to represent the three flow rates.

classdef FlowRate < int32
 enumeration
 Low (10)
 Medium (50)
 High (100)
 end
end

The Pump class has a method to return the current flow rate in gallons per minute. Define
the Speed property as a FlowRate class.

classdef Pump
 properties
 Speed FlowRate
 end
 methods
 function getGPM(p)
 if isempty(p.Speed)
 gpm = 0;
 else
 gpm = int32(p.Speed);
 end
 fprintf('Flow rate is: %i GPM\n',gpm);
 end
 end
end

Users can set the Speed property using inexact text.

 Property Class and Size Validation

8-37

p = Pump;
p.Speed = 'm'

p =

 Pump with properties:

 Speed: Medium

The numerical value is available from the property.

getGPM(p)

Flow rate is: 50 GPM

For information about enumeration classes, see “Define Enumeration Classes” on page
14-5.

Integer Class Validation

MATLAB supports several integer classes (see “Integers”). However, restricting a
property to an integer class can result in integer overflow. The resulting value can
saturate at the maximum or minimum value in the integer’s range.

When integer overflow occurs, the value that is assigned to a property can be a value that
is different from the value from the right side of the assignment statement.

For example, suppose that you want to restrict a property value to a scalar uint8.

classdef IntProperty
 properties
 Value(1,1) uint8
 end
end

Assigning a numeric value to the Value property effectively casts the numeric value to
uint8, but does not result in an error for out-of-range values.

a = IntProperty;
a.Value = -10;
disp(a.Value)

0

8 Properties — Storing Class Data

8-38

Assignment to the Value property is equivalent to indexed assignment of an array. If the
assigned value is out of the range of values that uint8 can represent, MATLAB sets the
value to the closest value that it can represent using uint8.

a = uint8.empty;
a(1) = -10

a =

 uint8

 0

To avoid the potential for integer overflow, use a combination of validation functions that
restrict the value to the intended range instead of an integer class.

classdef IntProperty
 properties
 Value(1,1) {mustBeInteger, mustBeNonnegative,...
 mustBeLessThan(Value,256)}
 end
end

Because there is no conversion of the assigned value by the uint8 class, the validators
catch out of range values and throw an appropriate error.

a = IntProperty;
a.Value = -10;

Error setting property 'Value' of class 'IntProperty':
Value must be nonnegative.

Default Values Per Size and Class
Any default property value that you assign in the class definition must conform to the
specified validation.

Implicit Default Values

MATLAB defines a default value implicitly if you do not specify a default value in the class
definition. This table shows how size and class determine the implicit default value of
MATLAB classes.

 Property Class and Size Validation

8-39

Size Class Implicit Default Assigned
by MATLAB

(m,n) Any numeric m-by-n array of zeros of
specified class.

(m,:) or (:,n) Any class m-by-0 or 0-by-n of specified
class.

(m,n) char m-by-n char array of spaces.
(m,n) cell m-by-n cell array with each

cell containing a 0-by-0
double.

(m,n) struct m-by-n struct
(m,n) string m-by-n string
(m,n) enumeration class First enumeration member

defined in the class.
(1,1) function_handle Runtime error — define a

default value in the class.

To determine the implicit default value for nonzero and explicit size specifications,
MATLAB calls the default class constructor and builds an array of the specified size using
the instance returned by the constructor call. If the class does not support a default
constructor (that is, a constructor called with no arguments), then MATLAB throws an
error when instantiating the class containing the validation.

If the specified size has any zero or unrestricted (:) dimensions, MATLAB creates a
default value that is an empty array with the unrestricted dimension set to zero.

For heterogeneous arrays, MATLAB calls the getDefaultScalarElement method to get
the default object.

See Also

Related Examples
• “Validate Property Values” on page 8-26
• “Property Validation Functions” on page 8-42

8 Properties — Storing Class Data

8-40

• “Enumerations for Property Values” on page 14-17

 See Also

8-41

Property Validation Functions
In this section...
“Validate Property Using Functions” on page 8-42
“MATLAB Validation Functions” on page 8-45
“Define Validation Functions” on page 8-47
“Add Support for Validation Functions” on page 8-48

Validate Property Using Functions
Use property validation functions in class definitions to impose specific restrictions on
property values. A validation function accepts a potential property value as an argument
and issues an error if the value does not meet the specific requirement imposed by the
function.

During the validation process, MATLAB passes the value to each validation function listed
in the class definition. MATLAB calls each function from left to right and throws the first
error encountered. The value passed to the validation functions is the result of any
conversion applied by the class and size specifications. For more information on class and
size validation, see “Property Class and Size Validation” on page 8-33.

For a list of MATLAB validation functions, see “MATLAB Validation Functions” on page 8-
45

Validation Function Syntax

Specify validation functions as a comma-separated list of function names or function calls
with arguments, enclosed in braces.

classdef MyClass
 properties
 Prop {fcn1,fcn2,...} = defaultValue
 end
end

MATLAB passes the potential property value to the validation function implicitly.
However, if the validation function requires input arguments in addition to the potential
property value, then you must include both the property and the additional arguments.
Additional arguments must be literal values and cannot reference variables. Literal values
are nonsymbolic representations, such as numbers and text.

8 Properties — Storing Class Data

8-42

For example, consider the function mustBeGreaterThan. It requires a limiting value as
an input parameter. This validation function requires that a property value must be
greater than this limiting value.

Pass the property as the first argument. Use the property name, but do not enclose the
name in quotation marks. This property definition restricts Prop to values greater than
10.

properties
 Prop {mustBeGreaterThan(Prop,10)}
end

Using Validation Functions

The following class specifies validation functions for each property.

• Data must be numeric and finite.
• Interp must be one of the three options listed. Specify a default value for this

property to satisfy this requirement.
classdef ValidatorFunction
 properties
 Data {mustBeNumeric, mustBeFinite}
 Interp {mustBeMember(Interp,{'linear','cubic','spline'})} = 'linear'
 end
end

Creating a default object of the class shows the initial values.

a = ValidatorFunction

a =

 ValidatorFunction with properties:

 Data: []
 Interp: 'linear'

Assigning values to properties calls the validation functions.

a.Data = 'cubic'

Error setting property 'Data' of class 'ValidatorFunction':
Value must be numeric.

Because the Data property validation does not include a numeric class, there is no
conversion of the char vector to a numeric value. If you change the validation of the

 Property Validation Functions

8-43

Data property to specify the class as double, MATLAB converts the char vector to a
double array.

properties
 Data double {mustBeNumeric, mustBeFinite}
end

The assignment to the char vector does not produce an error because MATLAB converts
the char vector to class double.

a.Data = 'cubic'

a =

 ValidatorFunction with properties:

 Data: [99 117 98 105 99]
 Interp: 'linear'

Assignment to the Interp property requires an exact match.

a = ValidatorFunction;
a.Interp = 'cu'

Error setting property 'Interp' of class 'ValidatorFunction':
Value must be a member of this set
 linear
 cubic
 spline

Using an enumeration class provides inexact matching and case insensitivity.

Enumeration Class for Inexact Matching

Property validation using an enumeration class provides these advantages:

• Inexact, case-insensitive matching for unambiguous char vectors or string scalars
• Conversion of inexact matches to correct values

For example, suppose that you define the InterpMethod enumeration class for the
Interp property validation.

classdef InterpMethod
 enumeration
 linear

8 Properties — Storing Class Data

8-44

 cubic
 spline
 end
end

Change the Interp property validation to use the InterpMethod class.

classdef ValidatorFunction
 properties
 Data {mustBeNumeric, mustBeFinite}
 Interp InterpMethod
 end
end

Assign a value matching the first few letters of 'cubic'.

a = ValidatorFunction;
a.Interp = 'cu'

a =

 ValidatorFunction with properties:

 Data: []
 Interp: cubic

MATLAB Validation Functions
MATLAB defines functions for use in property validation. These functions support
common use patterns for validation and provide descriptive error messages. This table
lists the MATLAB validation functions, their meanings, and the MATLAB functions used by
the validation functions.

Name Meaning Functions Called
on Inputs

mustBePositive(value) value > 0 gt, isreal,
isnumeric,
islogical

mustBeNonpositive(valu
e)

value <= 0 ge, isreal,
isnumeric,
islogical

 Property Validation Functions

8-45

Name Meaning Functions Called
on Inputs

mustBeFinite(value) value has no NaN and
no Inf elements.

isfinite

mustBeNonNan(value) value has no NaN
elements.

isnan

mustBeNonnegative(valu
e)

value >= 0 ge, isreal,
isnumeric,
islogical

mustBeNegative(value) value < 0 lt, isreal,
isnumeric,
islogical

mustBeNonzero(value) value ~= 0 eq, isnumeric,
islogical

mustBeGreaterThan(valu
e,c)

value > c gt, isscalar,
isreal,
isnumeric,
islogical

mustBeLessThan(value,c
)

value < c lt, isreal,
isnumeric,
islogical

mustBeGreaterThanOrEqu
al(value,c)

value >= c ge, isreal,
isnumeric,
islogical

mustBeLessThanOrEqual(
value,c)

value <= c le, isreal,
isnumeric,
islogical

mustBeNonempty(value) value is not empty. isempty
mustBeNonsparse(value) value has no sparse

elements.
issparse

mustBeNumeric(value) value is numeric. isnumeric
mustBeNumericOrLogical
(value)

value is numeric or
logical.

isnumeric,
islogical

8 Properties — Storing Class Data

8-46

Name Meaning Functions Called
on Inputs

mustBeReal(value) value has no
imaginary part.

isreal

mustBeInteger(value) value ==
floor(value)

isreal,
isfinite, floor,
isnumeric,
islogical

mustBeMember(value,S) value is an exact
match for a member of
S.

ismember

Define Validation Functions
Validator functions are ordinary MATLAB functions that are designed for the specific
purpose of validating property values. Functions used as property validators:

• Accept the potential property value as an input argument
• Do not return values
• Throw errors if the validation fails

Creating your own validation function is useful when you want to provide specific
validation that is not available using the MATLAB validation functions. You can create
local functions within the class file or place the function on the MATLAB path to be
available for use in any class.

For example, the ImData class uses a local function to define a validator that restricts the
Data property to a specific range of numeric values.

classdef ImData
 properties
 Data {mustBeNumeric, mustBeInRange(Data,[0,255])} = 0
 end
end
function mustBeInRange(a,b)
 if any(a(:) < b(1)) || any(a(:) > b(2))
 error(['Value assigned to Data property is not in range ',...
 num2str(b(1)),'...',num2str(b(2))])
 end
end

 Property Validation Functions

8-47

When you create an instance of the ImData class, MATLAB validates that the default
value is numeric, in the range 0...255, and not empty.

a = ImData

a =

 ImData with properties:

 Data: 0

Property assignment invokes the validators in left-to-right order. Assigning a char vector
to the Data property causes an error thrown by mustBeNumeric.

a.Data = 'red'

Error setting property 'Data' of class 'ImData':
Value must be numeric.

Assigning a numeric value that is out of range causes an error thrown by
mustBeInRange.

a.Data = -1

Error setting property 'Data' of class 'ImData':
Value assigned to Data property is not in range 0...255

Add Support for Validation Functions
Support MATLAB validation functions for objects of your class by implementing the
dependent functions as methods of your class. To determine which methods to implement
for each function, see the validation function reference pages listed in this table
“MATLAB Validation Functions” on page 8-45.

For example, suppose that you want your class to support the mustBeGreaterThan
validation function. Overload these MATLAB functions as methods in your class:

• isreal — Always return logical true because mustBeGreaterThan does not
support complex numbers.

• gt — The second object in the comparison must be scalar, as required by
mustBeGreaterThan.

The SupportmBGT class implements support for mustBeGreaterThan.

8 Properties — Storing Class Data

8-48

classdef SupportmBGT
 properties
 Prop(1,1) double {mustBeReal}
 end
 methods
 function obj = SupportmBGT(data)
 if nargin > 0
 obj.Prop = data;
 end
 end
 function tf = isreal(obj)
 tf = true;
 end
 function tf = gt(obj1, obj2)
 tf = [obj1(:).Prop] > obj2.Prop;
 end
 end
end

Use mustBeGreaterThan with objects of this class:

a = SupportmBGT(10);
b = SupportmBGT(12);
mustBeGreaterThan(a,b)

Error using mustBeGreaterThan (line 19)
Value must be greater than the comparison value.

See Also

Related Examples
• “Validate Property Values” on page 8-26
• “Property Class and Size Validation” on page 8-33

 See Also

8-49

Metadata Interface to Property Validation
For information on property validation, see “Validate Property Values” on page 8-26.

You can determine what validation applies to a property by accessing the validation
metadata. Instances of the meta.Validation class provide the following information
about property validation.

• Class requirement of the property specified as a meta.class object
• Size requirements of the property value specified as an array of

meta.FixedDimension and meta.UnrestrictedDimension objects
• Function handles referencing validation functions applied to property values specified

as a cell array of function handles.

For example, the ValidationExample class defines a property that must be an array of
doubles that is 1-by-any number of elements and must be a real number that is greater
than 10.

classdef ValidationExample
 properties
 Prop (1,:) double {mustBeReal, mustBeGreaterThan(Prop, 10)} = 200;
 end
end

Access the meta.Validation object from the property's meta.property object. Get
the validation information from the meta.Validation object properties. Collection this
information into a cell array.

• Get the size information from the Size property
• Get the class name from the Class property
• Get a cell array of function handles for the validation functions from the

ValidatorFunctions property.

mc = ?ValidationExample;
mp = findobj(mc.PropertyList,'Name','Prop');
sz = mp.Validation.Size;
len = length(sz);
dim = cell(1:len);
 for k = 1:len
 switch class(sz(k))
 case 'meta.FixedDimension'

8 Properties — Storing Class Data

8-50

 dim{k} = sz(k).Length;
 case 'meta.UnrestrictedDimension'
 dim{k} = ':';
 end
 end
dim{end+1} = mp.Validation.Class.Name;
dim{end+1} = mp.Validation.ValidatorFunctions;

See Also
meta.Validation | meta.property

Related Examples
• “Validate Property Values” on page 8-26
• “Property Class and Size Validation” on page 8-33
• “Property Validation Functions” on page 8-42

 See Also

8-51

Property Access Methods

In this section...
“Properties Provide Access to Class Data” on page 8-52
“Property Set and Get Methods” on page 8-53
“Set and Get Method Execution and Property Events” on page 8-55
“Access Methods and Properties Containing Arrays” on page 8-56
“Access Methods and Arrays of Objects” on page 8-56
“Modify Property Values with Access Methods” on page 8-56

Properties Provide Access to Class Data
In MATLAB, properties can have public access. Therefore, properties can provide access
to data that the class design exposes to users.

Use property access methods to provide error checking or to implement side effects
resulting from property access. Examples of access methods include functions that update
other property values when setting the property or translate the format of a property
value before returning the value.

You can use property validation to restrict the size, class, and other aspects of property
values. For information on property validation, see “Validate Property Values” on page 8-
26.

Performance Considerations with Access Methods

Property access methods do add the overhead of a function call whenever accessing
property values. If performance-critical access to properties occurs inside methods of the
class, define private properties to store values. Use these values inside methods without
any error checking. For less frequent access from outside the class, define public
Dependent properties that use access methods for error checking.

For information on access methods used with Dependent properties, see “Set and Get
Methods for Dependent Properties” on page 8-64.

8 Properties — Storing Class Data

8-52

Property Set and Get Methods
Property access methods execute specific code whenever the property value is queried or
assigned a value. These methods enable you to perform various operations:

• Execute code before assigning property values to perform actions such as:

• Impose value range restrictions (“Validate Property Values” on page 8-26)
• Check for proper types and dimensions
• Provide error handling

• Execute code before returning the current values of properties to perform actions
such as:

• Calculate the value of properties that do not store values (see “Calculate Data on
Demand” on page 3-23)

• Change the value of other properties
• Trigger events (see “Overview Events and Listeners” on page 11-2)

To control what code can access properties, see “Property Attributes” on page 8-9.

MATLAB Calls Access Methods

Note You cannot call property access methods directly. MATLAB calls these
methods when you access property values.

Property access methods execute automatically whenever you set or query the
corresponding property values from outside the access method. MATLAB does not call
access methods recursively. That is, MATLAB does not call the set method when setting
the property from within its set method. Similarly, MATLAB does not call the get method
when querying the property value from within its get method.

Obtain the function handle for the set and get access methods from the property
meta.property object. The meta.property SetMethod and GetMethod properties
contain the function handles that refer to these methods.

Restrictions on Access Methods

Define property access methods only:

 Property Access Methods

8-53

• For concrete properties (that is, properties that are not abstract)
• Within the class that defines the property (unless the property is abstract in that class,

in which case the concrete subclass must define the access method).

MATLAB has no default set or get property access methods. Therefore, if you do not
define property access methods, MATLAB software does not invoke any methods before
assigning or returning property values.

Once defined, only the set and get methods can set and query the actual property values.
See “When Set Method Is Called” on page 8-59 for information on cases where MATLAB
does not call property set methods.

Note Property set and get access methods are not equivalent to user-callable set and
get methods used to set and query property values from an instance of the class. See
“Implement Set/Get Interface for Properties” on page 7-28 for information on user-
callable set and get methods.

Access Methods Cannot Call Functions to Access Properties

You can set and get property values only from within your property set or get access
method. You cannot call another function from the set or get method and attempt to
access the property value from that function.

For example, an anonymous function that calls another function to do the actual work
cannot access the property value. Similarly, an access function cannot call another
function to access the property value.

Defining Access Methods

Access methods have special names that include the property name. Therefore,
get.PropertyName executes whenever PropertyName is referenced and
set.PropertyName executes whenever PropertyName is assigned a value.

Define property access methods in a methods block that specifies no attributes. You
cannot call these methods directly. MATLAB calls these methods when any code accesses
the properties.

Property access methods do not appear in the list of class methods returned by the
methods command and are not included in the meta.class object Methods property.

8 Properties — Storing Class Data

8-54

Access Method Function Handles

The property meta.property object contains function handles to the property set and
get methods. SetMethod contains a function handle to the set method. GetMethod
contains a function handle to the get method.

Obtain these handles from the meta.property object:
mc = ?ClassName;
mp = findobj(mc.PropertyList,'Name','PropertyName');
fh = mp.GetMethod;

For example, if the class MyClass defines a get method for its Text property, you can
obtain a function handle to this function from the meta.class object:

mc = ?MyClass;
mp = findobj(mc.PropertyList,'Name','Text');
fh = mp.GetMethod;

The returned value, fh, contains a function handle to the get method defined for the
specified property name for the specified class.

For information on defining function handles, see “Create Function Handle”

Set and Get Method Execution and Property Events
MATLAB software generates events before and after set and get operations. You can use
these events to inform listeners that property values have been referenced or assigned.
The timing of event generation is as follows:

• PreGet — Triggered before calling the property get method
• PostGet — Triggered after the property get method has returned its value

If a class computes a property value (Dependent = true), then the behaviors of its set
events are like the get events:

• PreSet — Triggered before calling the property set method
• PostSet — Triggered after calling the property set method

If a property is not computed (Dependent = false, the default), then the assignment
statement with the set method generates the events:

 Property Access Methods

8-55

• PreSet — Triggered before assigning the new property value within the set method
• PostSet — Triggered after assigning the new property value within the set method

For information about using property events, see “Create Property Listeners” on page 11-
40.

Access Methods and Properties Containing Arrays
You can use array indexing with properties that contain arrays without interfering with
property set and get methods.

For indexed reference:

val = obj.PropName(n);

MATLAB calls the get method to get the referenced value.

For indexed assignment:

obj.PropName(n) = val;

MATLAB:

• Invokes the get method to get the property value
• Performs the indexed assignment on the returned property
• Passes the new property value to the set method

Access Methods and Arrays of Objects
When reference or assignment occurs on an object array, MATLAB calls the set and get
methods in a loop. In this loop, MATLAB always passes scalar objects to set and get
methods.

Modify Property Values with Access Methods
Property access methods are useful in cases where you want to perform some additional
steps before assigning or returning a property value. For example, the Testpoint class
uses a property set method to check the range of a value. It then applies scaling if it is
within a particular range, and set it to NaN if it is not.

8 Properties — Storing Class Data

8-56

The property get methods applies a scale factor before returning its current value:

classdef Testpoint
 properties
 expectedResult = []
 end
 properties(Constant)
 scalingFactor = 0.001
 end
 methods
 function obj = set.expectedResult(obj,erIn)
 if erIn >= 0 && erIn <= 100
 erIn = erIn.*obj.scalingFactor;
 obj.expectedResult = erIn;
 else
 obj.expectedResult = NaN;
 end
 end
 function er = get.expectedResult(obj)
 er = obj.expectedResult/obj.scalingFactor;
 end
 end
end

See Also

More About
• “Properties Containing Objects” on page 8-68

 See Also

8-57

Property Set Methods
In this section...
“Overview of Property Access Methods” on page 8-58
“Property Set Method Syntax” on page 8-58
“Validate Property Set Value” on page 8-59
“When Set Method Is Called” on page 8-59

Overview of Property Access Methods
For an overview of property access methods, see “Property Access Methods” on page 8-52

Property Set Method Syntax
MATLAB calls a property's set method whenever a value is assigned to the property.

Note You cannot call property access methods directly. MATLAB calls these
methods when you access property values.

Property set methods have the following syntax, where PropertyName is the name of the
property.

For a value class:

methods
 function obj = set.PropertyName(obj,value)
 ...
end

• obj — Object whose property is being assigned a value
• value — The new value that is assigned to the property

Value class set functions must return the modified object to the calling function. Handle
classes do not need to return the modified object.

For a handle class:

8 Properties — Storing Class Data

8-58

methods
 function set.PropertyName(obj,value)
 ...
end

Use default method attributes for property set methods. The methods block defining the
set method cannot specify attributes.

Validate Property Set Value
Use the property set method to validate the value being assigned to the property. The
property set method can perform actions like error checking on the input value before
taking whatever action is necessary to store the new property value.

classdef MyClass
 properties
 Prop1
 end
 methods
 function obj = set.Prop1(obj,value)
 if (value > 0)
 obj.Prop1 = value;
 else
 error('Property value must be positive')
 end
 end
 end
end

For an example of a property set method, see “Restrict Properties to Specific Values” on
page 3-21 .

When Set Method Is Called
If a property set method exists, MATLAB calls it whenever a value is assigned to that
property. However, MATLAB does NOT call property set methods in the following cases:

• A value is assigned to a property from within its own property set method, to prevent
recursive calling of the set method. However, property assignments made from
functions called by a set method do call the set method.

• MATLAB assigns a default value to the property during initialization of an object
before calling object constructor functions.

 Property Set Methods

8-59

• When MATLAB copies a value object (any object that is not a handle), MATLAB does
not call the set or get method when copying property values from one object to
another.

• Any assignment made to a property value that is the same as the current value when
the property’s AbortSet attribute is true. See “Assignment When Property Value Is
Unchanged” on page 11-44 for more information on this attribute.

Setting Property Value in Constructor

Setting a property value in the constructor causes the property set method to be called.
For example, the PropertySetMethod class defines a property set method for the Prop1
property.

classdef PropertySetMethod

 properties
 Prop1 = "Default String"
 end

 methods
 function obj = PropertySetMethod(str)
 if nargin > 0
 obj.Prop1 = str;
 end
 end

 function obj = set.Prop1(obj,str)
 obj.Prop1 = str;
 fprintf('set.Prop1 method called. Prop1 = %s\n', obj.Prop1);
 end
 end
end

If you call the class constructor with no input arguments, MATLAB does not call the
set.Prop1 method.

>> o = PropertySetMethod

o =

 PropertySetMethod with properties:

 Prop1: "Default String"

8 Properties — Storing Class Data

8-60

Setting the property value in the constructor results in a call to the property set method.

>> o = PropertySetMethod("New string")

set.Prop1 method called. Prop1 = New string

o =

 PropertySetMethod with properties:

 Prop1: "New string"

If you copy the object to another variable, MATLAB does not call the property set method
even though the right side object in the assignment uses a nondefault value for the
property:

a = o;
a.Prop1

a.Prop1

ans =

 "New String"

See Also

Related Examples
• “Property Get Methods” on page 8-62
• “Property Access Methods” on page 8-21
• “Validate Property Values” on page 8-26

 See Also

8-61

Property Get Methods
In this section...
“Overview of Property Access Methods” on page 8-62
“Property Get Method Syntax” on page 8-62
“Calculate Value for Dependent Property” on page 8-62
“Errors Not Returned from Get Method” on page 8-63
“Get Method Behavior” on page 8-63

Overview of Property Access Methods
For an overview of property access methods, see “Property Access Methods” on page 8-
52.

Property Get Method Syntax
MATLAB calls a property's get method whenever the property value is queried.

Note You cannot call property access methods directly. MATLAB calls these
methods when you access property values.

Property get methods have the following syntax, where PropertyName is the name of the
property. The function must return the property value.

methods
 function value = get.PropertyName(obj)
 ...
end

Calculate Value for Dependent Property
The SquareArea class defines a dependent property Area. MATLAB does not store a
value for the dependent Area property. When you query the value of the Area property,
MATLAB calls the get.Area method calculates the value based on the Width and
Height properties.

8 Properties — Storing Class Data

8-62

classdef SquareArea
 properties
 Width
 Height
 end
 properties (Dependent)
 Area
 end
 methods
 function a = get.Area(obj)
 a = obj.Width * obj.Height;
 end
 end
end

Errors Not Returned from Get Method
The MATLAB default object display suppresses error messages returned from property
get methods. MATLAB does not allow an error issued by a property get method to prevent
the display of the entire object.

Use the property set method to validate the property value. Validating the value when
setting a property ensures that the object is in a valid state. Use the property get method
only to return the value that the set method has validated.

Get Method Behavior
MATLAB does NOT call property get methods in the following cases:

• Getting a property value from within its own property get method, which prevents
recursive calling of the get method

• Copying a value object (that is, not derived from the handle class). The set or get
method is not called when copying property values from one object to another.

See Also

Related Examples
• “Set and Get Methods for Dependent Properties” on page 8-64

 See Also

8-63

Set and Get Methods for Dependent Properties
In this section...
“Calculate Dependent Property Value” on page 8-65
“When to Use Set Methods with Dependent Properties” on page 8-65
“Private Set Access with Dependent Properties” on page 8-66

Dependent properties do not store data. The value of a dependent property depends on
some other value, such as the value of a nondependent property.

Dependent properties must define get-access methods (get.PropertyName) to
determine a value for the property when the property is queried.

The values returned by dependent property get methods are not considered when testing
for object equality using isequal and isequaln.

To be able to set the value of a dependent property, the property must define a set access
method (set.PropertyName). The property set access method usually assigns the value
to another, nondependent property for storage of the value.

For example, the Account class returns a value for the dependent Balance property that
depends on the value of the Currency property. The get.Balance method queries the
Currency property before calculating a value for the Balance property.

MATLAB calls the get.Balance method when the Balance property is queried. You
cannot call get.Balance explicitly.

Here is a partial listing of the class showing a dependent property and its get method:

classdef Account
 properties
 Currency
 DollarAmount
 end
 properties (Dependent)
 Balance
 end
 ...
 methods
 function value = get.Balance(obj)
 c = obj.Currency;

8 Properties — Storing Class Data

8-64

 switch c
 case 'E'
 v = obj.DollarAmount / 1.1;
 case 'P'
 v = obj.DollarAmount / 1.5;
 otherwise
 v = obj.DollarAmount;
 end
 format bank
 value = v;
 end
 end
end

Calculate Dependent Property Value
One application of a property get method is to determine the value of a property only
when you need it, and avoid storing the value. To use this approach, set the property
Dependent attribute to true:

properties (Dependent = true)
 Prop
end

The get method for the Prop property determines the value of that property and assigns
it to the object from within the method:

function value = get.Prop(obj)
 value = calculateValue;
 ...
end

This get method calls a function or static method called calculateValue to calculate
the property value and returns value as a result. The property get method can take
whatever action is necessary within the method to produce the output value.

For an example of a property get method, see “Calculate Data on Demand” on page 3-23.

When to Use Set Methods with Dependent Properties
Although a dependent property does not store its value, you can define a set method for a
dependent property to enable code to set the property.

 Set and Get Methods for Dependent Properties

8-65

For example, suppose that you have a class that changes the name of a property from
OldPropName to NewPropName. You can continue to allow the use of the old name
without exposing it to new users. To support the old property name, define OldPropName
a dependent property with set and get methods:

properties
 NewPropName
end
properties (Dependent, Hidden)
 OldPropName
end
methods
 function obj = set.OldPropName(obj,val)
 obj.NewPropName = val;
 end
 function value = get.OldPropName(obj)
 value = obj.NewPropName;
 end
end

There is no memory wasted by storing both old and new property values. Code that
accesses OldPropName continues to work as expected. Setting the Hidden attribute of
OldPropName prevents new users from seeing the property.

Assignments made from property set methods cause the execution of any set methods
defined for properties being set. See “Calculate Data on Demand” on page 3-23 for an
example.

Private Set Access with Dependent Properties
If you use a dependent property only to return a value, then do not define a set access
method for the dependent property. Instead, set the SetAccess attribute of the
dependent property to private. For example, consider the following get method for the
MaxValue property:

methods
 function mval = get.MaxValue(obj)
 mval = max(obj.BigArray(:));
 end
end

This example uses the MaxValue property to return a value that it calculates only when
queried. For this application, define the MaxValue property as dependent and private:

8 Properties — Storing Class Data

8-66

properties (Dependent, SetAccess = private)
 MaxValue
end

See Also

Related Examples
• “Property Attributes” on page 8-9

 See Also

8-67

Properties Containing Objects
In this section...
“Assigning Objects as Default Property Values” on page 8-68
“Assigning to Read-Only Properties Containing Objects” on page 8-68
“Assignment Behavior” on page 8-68

Assigning Objects as Default Property Values
MATLAB evaluates property default values only once when loading the class. MATLAB
does not reevaluate the assignment each time you create an object of that class. If you
assign an object as a default property value in the class definition, MATLAB calls the
constructor for that object only once when loading the class.

Note Evaluation of property default values occurs only when the value is first needed,
and only once when MATLAB first initializes the class. MATLAB does not reevaluate the
expression each time you create an instance of the class.

For more information on the evaluation of expressions that you assign as property default
values, see “When MATLAB Evaluates Expressions” on page 6-13.

Assigning to Read-Only Properties Containing Objects
When a class defines a property with private or protected SetAccess, and that property
contains an object which itself has properties, assignment behavior depends on whether
the property contains a handle or a value object:

• Handle object – you can set properties on handle objects contained in read-only
properties

• Value object – you cannot set properties on value object contained in read-only
properties.

Assignment Behavior
These classes illustrate the assignment behavior:

8 Properties — Storing Class Data

8-68

• ReadOnlyProps – class with two read-only properties. The class constructor assigns a
handle object of type HanClass to the PropHandle property and a value object of
type ValClass to the PropValue property.

• HanClass – handle class with public property
• ValClass – value class with public property

classdef ReadOnlyProps
 properties(SetAccess = private)
 PropHandle
 PropValue
 end
 methods
 function obj = ReadOnlyProps
 obj.PropHandle = HanClass;
 obj.PropValue = ValClass;
 end
 end
end

classdef HanClass < handle
 properties
 Hprop
 end
end

classdef ValClass
 properties
 Vprop
 end
end

Create an instance of the ReadOnlyProps class:

a = ReadOnlyProps

a =

 ReadOnlyProps with properties:

 PropHandle: [1x1 HanClass]
 PropValue: [1x1 ValClass]

Use the private PropHandle property to set the property of the HanClass object it
contains:

 Properties Containing Objects

8-69

class(a.PropHandle.Hprop)

ans =

double

a.PropHandle.Hprop = 7;

Attempting to make an assignment to the value class object property is not allowed:

a.PropValue.Vprop = 11;

You cannot set the read-only property 'PropValue' of ReadOnlyProps.

See Also

More About
• “Mutable and Immutable Properties” on page 8-24

8 Properties — Storing Class Data

8-70

Dynamic Properties — Adding Properties to an Instance
In this section...
“What Are Dynamic Properties” on page 8-71
“Define Dynamic Properties” on page 8-72

What Are Dynamic Properties
You can add properties to instances of classes that derive from the dynamicprops class.
These dynamic properties are sometimes referred to as instance properties. Use dynamic
properties to attach temporary data to objects or to assign data that you want to associate
with an instance of a class, but not all objects of that class.

It is possible for more than one program to define dynamic properties on the same object.
In these cases, avoid name conflicts. Dynamic property names must be valid MATLAB
identifiers (see “Variable Names”) and cannot be the same name as a method of the class.

Characteristics of Dynamic Properties

Once defined, dynamic properties behave much like class-defined properties:

• Set and query the values of dynamic properties using dot notation. (See “Assign Data
to the Dynamic Property” on page 8-73.)

• MATLAB saves and loads dynamic properties when you save and load the objects to
which they are attached. (See “Dynamic Properties and ConstructOnLoad” on page 8-
82.)

• Define attributes for dynamic property. (See “Set Dynamic Property Attributes” on
page 8-72).

• By default, dynamic properties have their NonCopyable attribute set to true. If you
copy an object containing a dynamic property, the dynamic property is not copied.
(See “Objects with Dynamic Properties” on page 7-41)

• Add property set and get access methods. (See “Set and Get Methods for Dependent
Properties” on page 8-64.)

• Listen for dynamic property events. (See “Dynamic Property Events” on page 8-77.)
• Access dynamic property values from object arrays, with restricted syntax. (See

“Accessing Dynamic Properties in Arrays” on page 10-14.)

 Dynamic Properties — Adding Properties to an Instance

8-71

• The isequal function always returns false when comparing objects that have
dynamic properties, even if the properties have the same name and value. To compare
objects that contain dynamic properties, overload isequal for your class.

Define Dynamic Properties
Any class that is a subclass of the dynamicprops class (which is itself a subclass of the
handle class) can define dynamic properties using the addprop method. The syntax is:

P = addprop(H,'PropertyName')

where:

P is an array of meta.DynamicProperty objects

H is an array of handles

PropertyName is the name of the dynamic property you are adding to each object

Naming Dynamic Properties

Use only valid names when naming dynamic properties (see “Variable Names”). In
addition, do not use names that:

• Are the same as the name of a class method
• Are the same as the name of a class event
• Contain a period (.)
• Are the names of function that support array functionality: empty, transpose,

ctranspose, permute, reshape, display, disp, details, or sort.

Set Dynamic Property Attributes

To set property attributes, use the meta.DynamicProperty object associated with the
dynamic property. For example, if P is the object returned by addprop, this statement
sets the property’s Hidden attribute to true:

P.Hidden = true;

The property attributes Constant and Abstract have no meaning for dynamic
properties. Setting the value of these attributes to true has no effect.

8 Properties — Storing Class Data

8-72

Remove a Dynamic Property

Remove the dynamic property by deleting its meta.DynamicProperty object:

delete(P);

Assign Data to the Dynamic Property

Suppose, you are using a predefined set of user interface widget classes (buttons, sliders,
check boxes, etc.). You want to store the location of each instance of the widget class.
Assume that the widget classes are not designed to store location data for your particular
layout scheme. You want to avoid creating a map or hash table to maintain this
information separately.

Assuming the button class is a subclass of dynamicprops, add a dynamic property to
store your layout data. Here is a simple class to create a uicontrol button:

classdef button < dynamicprops
 properties
 UiHandle
 end
 methods
 function obj = button(pos)
 if nargin > 0
 if length(pos) == 4
 obj.UiHandle = uicontrol('Position',pos,...
 'Style','pushbutton');
 else
 error('Improper position')
 end
 end
 end
 end
end

Create an instance of the button class, add a dynamic property, and set its value:

b1 = button([20 40 80 20]);
b1.addprop('myCoord');
b1.myCoord = [2,3];

Access the dynamic property just like any other property, but only on the object on which
you defined it:

b1.myCoord

 Dynamic Properties — Adding Properties to an Instance

8-73

ans =

 2 3

Access Attribute for Dynamic Properties

Using nonpublic Access with dynamic properties is not recommended because these
properties belong to specific instances that are often created outside of class methods.
The Access attribute of a dynamic property applies to the class of the instance that
contains the dynamic property. The dynamic property Access attribute does not
necessarily apply to the class whose method adds the dynamic property.

For example, if a base class method adds a dynamic property with private access to an
instance, the private access applies only to the class of the instance.

For more information on dynamic property attributes, see meta.DynamicProperty. Use
the handle findprop method to get the meta.DynamicProperty object.

See Also

Related Examples
• “Set and Get Methods for Dynamic Properties” on page 8-75
• “Dynamic Property Events” on page 8-77
• “Dynamic Properties and ConstructOnLoad” on page 8-82

8 Properties — Storing Class Data

8-74

Set and Get Methods for Dynamic Properties
In this section...
“Create Access Methods for Dynamic Properties” on page 8-75
“Shared Set and Get Methods” on page 8-76

You can define property set access or get access methods for dynamic properties without
creating additional class methods. For general information on the use of access methods,
see “Property Access Methods” on page 8-52.

Create Access Methods for Dynamic Properties
Use these steps to create a property access method:

• Define a function that implements the operations you want to perform before the
property set or get occurs. These methods must have the following signatures:
mySet(obj,val) or val = myGet(obj)

• Obtain the dynamic property's corresponding meta.DynamicProperty object.
• Assign a function handle referencing your set or get property function to the

meta.DynamicProperty object's GetMethod or SetMethod property. This function
does not need to be a method of the class. You cannot use a naming scheme like
set.PropertyName. Instead, use any other valid function name.

Suppose that you want to create a property set function for the myCoord dynamic
property of the button class created in “Define Dynamic Properties” on page 8-72.

Write the function as follows.

function set_myCoord(obj,val)
 if ~(length(val) == 2)
 error('myCoords require two values')
 end
 obj.myCoord = val;
end

Because button is a handle class, the property set function does not need to return the
object as an output argument.

To get the meta.DynamicProperty object, use the handle class findprop method:

 Set and Get Methods for Dynamic Properties

8-75

mb1 = b1.findprop('myCoord');
mb1.SetMethod = @set_myCoord;

MATLAB calls the property set function whenever you set this property:

b1.myCoord = [1 2 3] % length must be two

Error using button.set_myCoord
myCoords require two values

You can set and get the property values only from within your property access methods.
You cannot call another function from the set or get method, and then attempt to access
the property value from that function.

Shared Set and Get Methods
You can assign the same function handle for the set or get method of multiple dynamic
properties. MATLAB passes only the object and the value to the assigned set function.

Reference or assignment to a property from within its set or get method does not invoke
the set or get method again. Therefore, if you use a handle to the same function for
multiple dynamic properties, that function is not invoked when accessing any of those
properties from within that function.

See Also

Related Examples
• “Dynamic Properties — Adding Properties to an Instance” on page 8-71

8 Properties — Storing Class Data

8-76

Dynamic Property Events
In this section...
“Dynamic Properties and Ordinary Property Events” on page 8-77
“Dynamic-Property Events” on page 8-77
“Listen for a Specific Property Name” on page 8-78
“PropertyAdded Event Callback Execution” on page 8-79
“PropertyRemoved Event Callback Execution” on page 8-80
“How to Find meta.DynamicProperty Objects” on page 8-80

Dynamic Properties and Ordinary Property Events
Dynamic properties support property set and get events so you can define listeners for
these properties. Listeners are bound to the particular dynamic property for which they
are defined.

If you delete a dynamic property, and then create another dynamic property with the
same name, the listeners do not respond to events generated by the new property. A
listener defined for a dynamic property that has been deleted does not cause an error, but
the listener callback is never executed.

“Property-Set and Query Events” on page 11-17 provides more information on how to
define listeners for these events.

Dynamic-Property Events
To respond to the addition and removal of dynamic properties, attach listeners to objects
containing the dynamic properties. The dynamicprops class defines events for this
purpose:

• PropertyAdded — Triggered when you add a dynamic property to an object derived
from the dynamicprops class.

• PropertyRemoved — Triggered when you delete the object or the
meta.DynamicProperty object associated with a dynamic property.

• ObjectBeingDestroyed — Triggered when the object is destroyed. This event is
inherited from the handle class.

 Dynamic Property Events

8-77

These events have public listen access (ListenAccess attribute) and private notify
access (NotifyAccess attribute).

The PropertyAdded and PropertyRemoved events pass an
event.DynamicPropertyEvent object to listener callbacks. The event data object has
three properties:

• PropertyName — Name of the dynamic property that is added or removed
• Source — Handle to the object that is the source of the event
• EventName — Name of the event (PropertyAdded, PropertyRemoved, or

ObjectBeingDestroyed)

Listen for a Specific Property Name
Suppose that you have an application that creates a dynamic property under certain
conditions. You want to:

• Set the value of a hidden property to true when a property named SpecialProp is
added.

• Set the value of the hidden property to false when SpecialProp is removed.

Use the event.DynamicPropertyEvent event data to determine the name of the
property and whether it is added or deleted.

The DynamTest class derives from dynamicprops. It defines a hidden property,
HiddenProp.

classdef DynamTest < dynamicprops
 properties (Hidden)
 HiddenProp
 end
end

Define a callback function that uses the EventName property of the event data to
determine if a property is added or removed. Obtain the name of the property from the
PropertyName property of the event data. If a dynamic property is named
SpecialProp, change the value of the hidden property.

function DyPropEvtCb(src,evt)
 switch evt.EventName
 case 'PropertyAdded'

8 Properties — Storing Class Data

8-78

 switch evt.PropertyName
 case 'SpecialProp'
 % Take action based on the addition of this property
 %...
 %...
 src.HiddenProp = true;
 disp('SpecialProp added')
 otherwise
 % Other property added
 % ...
 disp([evt.PropertyName,' added'])
 end
 case 'PropertyRemoved'
 switch evt.PropertyName
 case 'SpecialProp'
 % Take action based on the removal of this property
 %...
 %...
 src.HiddenProp = false;
 disp('SpecialProp removed')
 otherwise
 % Other property removed
 % ...
 disp([evt.PropertyName,' removed'])
 end
 end
end

Create an object of the DynamTest class.

dt = DynamTest;

Add a listener for both PropertyAdded and PropertyRemoved events.

lad = addlistener(dt,'PropertyAdded',@DyPropEvtCb);
lrm = addlistener(dt,'PropertyRemoved',@DyPropEvtCb);

PropertyAdded Event Callback Execution
Adding a dynamic property triggers the PropertyAdded event. This statement adds a
dynamic property to the object and saves the returned meta.DynamicProperty object.

ad = addprop(dt,'SpecialProp');

 Dynamic Property Events

8-79

The addition of the dynamic property causes the listener to execute its callback function,
DyPropEvtCb. The callback function assigns a value of true to the HiddenProp
property.

dt.HiddenProp

ans =

 1

PropertyRemoved Event Callback Execution
Remove a dynamic property by calling delete on the meta.DynamicProperty object
that is returned by the addprop method. Removing the meta.DynamicProperty object
triggers the PropertyRemoved event.

Delete the meta.DynamicProperty object returned when adding the dynamic property
SpecialProp.

delete(ad)

The callback executes:

SpecialProp removed

The value of HiddenProp is now false.

dt.HiddenProp

ans =

 0

How to Find meta.DynamicProperty Objects
You can obtain the meta.DynamicProperty object for a dynamic property using
findprop. Use findprop if you do not have the object returned by addprop.

ad = findprop(dt,'SpecialProp');

8 Properties — Storing Class Data

8-80

See Also

Related Examples
• “Dynamic Properties — Adding Properties to an Instance” on page 8-71

 See Also

8-81

Dynamic Properties and ConstructOnLoad
Setting the class ConstructOnLoad attribute to true causes MATLAB to call the class
constructor when loading the class. MATLAB saves and restores dynamic properties when
loading an object.

If you create dynamic properties from the class constructor, you can cause a conflict if
you also set the class ConstructOnLoad attribute to true. Here is the sequence:

• A saved object saves the names and values of properties, including dynamic properties
• When loaded, a new object is created and all properties are restored to the values at

the time the object was saved
• Then, the ConstructOnLoad attribute causes a call to the class constructor, which

would create another dynamic property with the same name as the loaded property.
See “Save and Load Objects” on page 13-2 for more on the load sequence.

• MATLAB prevents a conflict by loading the saved dynamic property, and does not
execute addprop when calling the constructor.

If you use ConstructOnLoad, add dynamic properties from the class constructor, and
want the constructor to call addprop at load time, then set the dynamic property
Transient attribute to true. This setting prevents the property from being saved. For
example:

classdef (ConstructOnLoad) MyClass < dynamicprops
 function obj = MyClass
 P = addprop(obj,'DynProp');
 P.Transient = true;
 ...
 end
end

See Also

Related Examples
• “Dynamic Properties — Adding Properties to an Instance” on page 8-71

8 Properties — Storing Class Data

8-82

Methods — Defining Class
Operations

• “Methods in Class Design” on page 9-2
• “Method Attributes” on page 9-5
• “Ordinary Methods” on page 9-8
• “Methods in Separate Files” on page 9-11
• “Method Invocation” on page 9-15
• “Class Constructor Methods” on page 9-22
• “Static Methods” on page 9-33
• “Overload Functions in Class Definitions” on page 9-35
• “Class Support for Array-Creation Functions” on page 9-39
• “Object Precedence in Method Invocation” on page 9-48
• “Dominant Argument in Overloaded Graphics Functions” on page 9-50
• “Class Methods for Graphics Callbacks” on page 9-53

9

Methods in Class Design

In this section...
“Class Methods” on page 9-2
“Examples and Syntax” on page 9-2
“Kinds of Methods” on page 9-3
“Method Naming” on page 9-4

Class Methods
Methods are functions that implement the operations performed on objects of a class.
Methods, along with other class members support the concept of encapsulation—class
instances contain data in properties and class methods operate on that data. This design
allows the internal workings of classes to be hidden from code outside of the class, and
thereby enabling the class implementation to change without affecting code that is
external to the class.

Methods have access to private members of their class including other methods and
properties. This encapsulation enables you to hide data and create special interfaces that
must be used to access the data stored in objects.

Examples and Syntax
For an example to get started writing classes, see “Create a Simple Class” on page 2-2

For sample code and syntax, see “Methods and Functions” on page 5-15

For a discussion of how to create classes that modify standard MATLAB behavior, see
“Methods That Modify Default Behavior” on page 18-2 .

For information on the use of @ and path directors and packages to organize your class
files, see “Class Files and Folders” on page 5-2

For the syntax to use when defining classes in more than one file, see “Methods in
Separate Files” on page 9-11

9 Methods — Defining Class Operations

9-2

Kinds of Methods
There are specialized kinds of methods that perform certain functions or behave in
particular ways:

• Ordinary methods are functions that act on one or more objects and return some new
object or some computed value. These methods are like ordinary MATLAB functions
that cannot modify input arguments. Ordinary methods enable classes to implement
arithmetic operators and computational functions. These methods require an object of
the class on which to operate. See “Ordinary Methods” on page 9-8.

• Constructor methods are specialized methods that create objects of the class. A
constructor method must have the same name as the class and typically initializes
property values with data obtained from input arguments. The class constructor
method must declare at least one output argument, which is the object being
constructed. The first output is always the object being constructed. See “Class
Constructor Methods” on page 9-22

• Destructor methods are called automatically when the object is destroyed, for example
if you call delete(object) or there are no longer any references to the object. See
“Handle Class Destructor” on page 7-16

• Property access methods enable a class to define code to execute whenever a property
value is queried or set. See “Property Access Methods” on page 8-52

• Static methods are functions that are associated with a class, but do not necessarily
operate on class objects. These methods do not require an instance of the class to be
referenced during invocation of the method, but typically perform operations in a way
specific to the class. See “Static Methods” on page 9-33

• Conversion methods are overloaded constructor methods from other classes that
enable your class to convert its own objects to the class of the overloaded constructor.
For example, if your class implements a double method, then this method is called
instead of the double class constructor to convert your class object to a MATLAB
double object. See “Object Converters” on page 18-12 for more information.

• Abstract methods define a class that cannot be instantiated itself, but serves as a way
to define a common interface used by numerous subclasses. Classes that contain
abstract methods are often referred to as interfaces. See “Abstract Classes” on page
12-91 for more information and examples.

 Methods in Class Design

9-3

Method Naming
The name of a function that implements a method can contain dots (for example,
set.PropertyName) only if the method is one of the following:

• Property set/get access method (see “Property Access Methods” on page 8-52)
• Conversion method that converts to a package-qualified class, which requires the use

of the package name (see “Packages Create Namespaces” on page 6-25)

You cannot define property access or conversion methods as local functions, nested
functions, or separately in their own files. Class constructors and package-scoped
functions must use the unqualified name in the function definition; do not include the
package name in the function definition statement.

See Also

Related Examples
• “Method Attributes” on page 9-5
• “Rules for Naming to Avoid Conflicts” on page 9-37

9 Methods — Defining Class Operations

9-4

Method Attributes
In this section...
“Purpose of Method Attributes” on page 9-5
“Specifying Method Attributes” on page 9-5
“Table of Method Attributes” on page 9-5

Purpose of Method Attributes
Specifying attributes in the class definition enables you to customize the behavior of
methods for specific purposes. Control characteristics like access, visibility, and
implementation by setting method attributes. Subclasses do not inherit superclass
member attributes.

Specifying Method Attributes
Assign method attributes on the same line as the methods keyword:

methods (Attribute1 = value1, Attribute2 = value2,...)
 ...
end

For more information on attribute syntax, see “Attribute Specification” on page 5-22.

Table of Method Attributes
Attributes enable you to modify the behavior of methods. All methods support the
attributes listed in the following table.

Attribute values apply to all methods defined within the methods...end code block that
specifies the nondefault values.

 Method Attributes

9-5

Method Attributes

Attribute
Name

Class Description

Abstract logical Default =
false

If true, the method has no implementation. The method has
a syntax line that can include arguments that subclasses use
when implementing the method:

• Subclasses are not required to define the same number of
input and output arguments. However, subclasses
generally use the same signature when implementing their
version of the method.

• The method can have comments after the function line.
• The method does not contain function or end keywords,

only the function syntax (e.g., [a,b] = myMethod(x,y))
Access • enumeration,

default =
public

• meta.class
object

• cell array of
meta.class
objects

Determines what code can call this method:

• public — Unrestricted access
• protected — Access from methods in class or subclasses
• private — Access by class methods only (not from

subclasses)
• List classes that have access to this method. Specify

classes as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell

array, {}, is the same as private access.

See “Class Members Access” on page 12-28
Hidden logical Default =

false
When false, the method name shows in the list of methods
displayed using the methods or methodsview commands. If
set to true, the method name is not included in these listings
and ismethod does not return true for this method name.

Sealed logical Default =
false

If true, the method cannot be redefined in a subclass.
Attempting to define a method with the same name in a
subclass causes an error.

9 Methods — Defining Class Operations

9-6

Attribute
Name

Class Description

Static logical Default =
false

Specify as true to define a method that does not depend on
an object of the class and does not require an object
argument. Use the class name to call the method:
classname.methodname or an instance of the class:
obj.methodname

“Static Methods” on page 9-33 provides more information.
Framework
attributes

Classes that use certain framework base classes have framework-specific
attributes. See the documentation for the specific base class you are using for
information on these attributes.

 Method Attributes

9-7

Ordinary Methods

In this section...
“Ordinary Methods Operate on Objects” on page 9-8
“Methods Inside classdef Block” on page 9-8
“Method Files” on page 9-9

Ordinary Methods Operate on Objects
Ordinary methods define functions that operate on objects of the class. Therefore, one of
the input arguments must be an object or array of objects of the defining class. These
methods can compute values based on object data, can overload MATLAB built-in
functions, and can call other methods and functions. Ordinary methods can return
modified objects.

Methods Inside classdef Block
This example shows the definition of a method (methodName) within the classdef and
methods blocks:

classdef ClassName
 methods (AttributeName = value,...)
 function methodName(obj,args)
 % method code
 ...
 end
 ...
 end % end of method block
 ...
end

Method attributes apply only to that particular methods block, which is terminated by the
end statement.

Note Nonstatic methods must include an explicit object variable as a function argument.
The MATLAB language does not support an implicit reference in the method function
definition.

9 Methods — Defining Class Operations

9-8

Example of a Method

The addData method adds a value to the Data property of MyData objects. The
mustBeNumeric function restricts the value of the Data property to numeric values. The
property has a default value of 0.

The addData method returns the modified object, which you can reassign to the same
variable.

classdef MyData
 properties
 Data {mustBeNumeric} = 0
 end
 methods
 function obj = addData(obj,val)
 if isnumeric(val)
 newData = obj.Data + val;
 obj.Data = newData;
 end
 end
 end
end

a = MyData;
a = addData(a,75)

a =

 MyData with properties:

 Data: 75

Calling Methods

Either of the following statements is correct syntax for calling a method, where obj is an
object of the class defining the methodName method:

obj.methodName(arg)
methodName(obj,arg)

Method Files
You can define methods:

 Ordinary Methods

9-9

• Inside the class definition block
• In a separate file in the class folder (that is, @ClassName folder)

For more information on class folders, see “Folders Containing Class Definitions” on page
6-17.

See Also

More About
• “Methods in Separate Files” on page 9-11
• “Determining Which Method Is Invoked” on page 9-15
• “Operator Overloading” on page 18-47

9 Methods — Defining Class Operations

9-10

Methods in Separate Files
In this section...
“Class Folders” on page 9-11
“Define Method in Function File” on page 9-12
“Specify Method Attributes in classdef File” on page 9-12
“Methods You Must Define in the classdef File” on page 9-13

Class Folders
You can define class methods in files that are separate from the class definition file, with
certain exceptions (see “Methods You Must Define in the classdef File” on page 9-13).

To use multiple files for class definitions, put the class files in a folder having a name
beginning with the @ character followed by the name of the class (this is called a class
folder). Ensure that the parent folder of the class folder is on the MATLAB path.

If the class folder is contained in one or more package folders, then the top-level package
folder must be on the MATLAB path.

For example, the folder @MyClass must contain the file MyClass.m (which contains the
classdef block) and can contain other methods and function defined in files having a .m
extension. The folder @MyClass can contain a number of files:

@MyClass/MyClass.m
@MyClass/subsref.m
@MyClass/subsasgn.m
@MyClass/horzcat.m
@MyClass/vertcat.m
@MyClass/myFunc.m

Note MATLAB treats any.m file in the class folder as a method of the class. The base
name of the file must be a valid MATLAB function name. Valid function names begin with
an alphabetic character, and can contain letters, numbers, or underscores.

 Methods in Separate Files

9-11

Define Method in Function File
To define a method in a separate file in the class folder, create the function in a file with
the .m extension. Do not use the method-end keywords in that file. Name the file with the
function name, as with any function.

In the myFunc.m file, implement the method:

function output = myFunc(obj,arg1,arg2)
 ...% code here
end

It is a good practice to declare the function signature in the classdef file in a methods
block:

classdef MyClass
 methods
 output = myFunc(obj,arg1,arg2)
 end
 ...
end

Specify Method Attributes in classdef File
If you specify method attributes for a method that you define in a separate function file,
include the method signature in a methods block in the classdef file. This methods
block specifies the attributes that apply to the method.

For example, the following code shows a method with Access set to private in the
methods block. The method implementation resides in a separate file. Do not include the
function or end keywords in the methods block. Include only the function signature
showing input and output arguments.

classdef MyClass
 methods (Access = private)
 output = myFunc(obj,arg1,arg2)
 end
end

In a file named myFunc.m, in the @MyClass folder, define the function:

9 Methods — Defining Class Operations

9-12

function output = myFunc(obj,arg1,arg2)
 ...
end

Static Methods in Separate Files

To create a static method, set the method Static attribute to true and list the function
signature in a static methods block in the classdef file. Include the input and output
arguments with the function name. For example:

classdef MyClass
...
 methods (Static)
 output = staticFunc1(arg1,arg2)
 staticFunc2
 end
 ...
end

Define the functions in separate files using the same function signature. For example, in
the file @MyClass/staticFunc1.m:

function output = staticFunc1(arg1,arg2)
 ...
end

and in @Myclass/staticFunc2.m:

function staticFunc2
 ...
end

Methods You Must Define in the classdef File
Define the following methods in the classdef file. You cannot define these methods in
separate files:

• Class constructor
• All functions that use dots in their names, including:

• Converter methods that must use the package name as part of the class name
because the class is contained in packages

 Methods in Separate Files

9-13

• Property set and get access methods

Related Information

• “Converters for Package Classes” on page 18-12
• “Property Access Methods” on page 8-52

See Also

Related Examples
• “Folders Containing Class Definitions” on page 6-17

9 Methods — Defining Class Operations

9-14

Method Invocation
In this section...
“Determining Which Method Is Invoked” on page 9-15
“Referencing Names with Expressions—Dynamic Reference” on page 9-17
“Index into Result of Method Call” on page 9-19
“Controlling Access to Methods” on page 9-20
“Invoking Superclass Methods in Subclass Methods” on page 9-20
“Invoking Built-In Functions” on page 9-21

Determining Which Method Is Invoked
When MATLAB invokes an ordinary method that has an argument list, it uses the
following criteria to determine which method to call

• The class of the leftmost argument whose class is not specified as inferior to any other
argument's class is chosen as the dominant class and its method is invoked.

• If this class does not define the called method, then a function with that name that is
on the MATLAB path is invoked.

• If no such function exists, MATLAB issues an error indicating that the dominant class
does not define the named method.

Dominant Argument

MATLAB uses dominant argument dispatching to determine which version of a method to
call. During method dispatching, MATLAB determines the dominant class from among the
arguments in the call. In general, all MATLAB classes defined using the classdef syntax
have equal precedence for purposes of method dispatching.

Classes defined using the classdef syntax take precedence over these MATLAB classes:

double, single, int64, uint64, int32, uint32, int16, uint16, int8, uint8, char,
string, logical, cell, struct, and function_handle.

In general, when two or more objects are part of the argument list, the method defined
for the class of the left-most object is invoked. However, user-defined classes can specify
the relative dominance of specific classes. For information, see “Class Precedence” on
page 6-23.

 Method Invocation

9-15

For example, suppose classA defines classB as inferior and suppose that both classes
define a method called combine.

Calling the method with an object of classB and classA:

combine(B,A)

actually calls the combine method of classA because A is the dominant argument.

Dot Notation vs. Function Notation

MATLAB classes support both function and dot notation syntax for calling methods. For
example, if setColor is a method of the class of object X, then calling setColor with
function notation would be:

X = setColor(X,'red');

The equivalent method call using dot notation is:

X = X.setColor('red')

However, in certain cases, the results for dot notation can differ with respect to how
MATLAB dispatching works:

• If there is an overloaded subsref, it is invoked whenever using dot notation. That is,
the statement is first tested to see if it is subscripted assignment.

• If there is no overloaded subsref, then setColor must be a method of X. An
ordinary function or a class constructor is never called using this notation.

• Only the argument X (to the left of the dot) is used for dispatching. No other
arguments, even if dominant, are considered. Therefore dot notation can call only
methods of X; methods of other argument are never called.

Case Where Result Is Different

Here is an example of a case where dot and function notation can give different results.
Suppose that you have the following classes:

• classA defines a method called methodA that requires an object of classB as one of
its arguments

• classB defines classA as inferior to classB

9 Methods — Defining Class Operations

9-16

classdef (InferiorClasses = {?classA}) classB
 ...
end

The methodA method is defined with two input arguments, one of which is an object of
classB:

classdef classA
methods
 function methodA(obj,obj_classB)
 ...
 end
end

classB does not define a method with the same name as methodA. Therefore, the
following syntax causes MATLAB to search the path for a function with the same name as
methodA because the second argument is an object of a dominant class. If a function with
that name exists on the path, then MATLAB attempts to call this function instead of the
method of classA and most likely returns a syntax error.

obj = classA(...);
methodA(obj,obj_classB)

Dot notation is stricter in its behavior. For example, this call to methodA:

obj = classA(...);
obj.methodA(obj_classB)

can call only methodA of the class of obj.

Referencing Names with Expressions—Dynamic Reference
You can reference an object's properties or methods using an expression in dot-
parentheses syntax:

obj.(expression)

The expression must evaluate to a char vector that is the name of a property or a
method. For example, the following statements are equivalent:

obj.Property1
obj.('Property1')

 Method Invocation

9-17

In this case, obj is an object of a class that defines a property called Property1.
Therefore, you can pass a char variable in the parentheses to reference to property:

propName = 'Property1';
obj.(propName)

You can call a method and pass input arguments to the method using another set of
parentheses:

obj.(expression)(arg1,arg2,...)

Using this notation, you can make dynamic references to properties and methods in the
same way you can create dynamic references to the fields of structs.

As an example, suppose that an object has methods corresponding to each day of the
week. These methods have the same names as the days of the week (Monday, Tuesday,
and so on). Also, the methods take as char vector input arguments, the current day of the
month (the date). Now suppose that you write a function in which you want to call the
correct method for the current day.

Use an expression created with the date and datestr functions:

obj.(datestr(date,'dddd'))(datestr(date,'dd'))

The expression datestr(date,'dddd') returns the current day as a char vector. For
example:

datestr(date,'dddd')

ans =

Tuesday

The expression datestr(date,'dd') returns the current date as a char vector. For
example:

datestr(date,'dd')

ans =

11

Therefore, the expression using dot-parentheses (called on Tuesday the 11th) is the
equivalent of:

9 Methods — Defining Class Operations

9-18

obj.Tuesday('11')

Index into Result of Method Call
You can use dot indexing into the result of a method call to obtain a value. For example,
this class defines a property and a constructor method. The constructor sets the property
value after evaluating an expression using the input argument.

classdef polyEval
 properties
 Result
 end
 methods
 function obj = polyEval(x)
 if nargin
 obj.Result = 2*x.^3 + 7*x.^2 + 2*x + 7;
 end
 end
 end
end

You can index into the result of a call the constructor method to access the value of the
property. For example, this call to polyEval() returns the value that is assigned to the
property. The instance of the polyEval class is created as a temporary variable and is
not saved in the workspace.

 polyEval(-3.5).Result

ans =

 0

In this case, the expression, polyEval(-3.5).Result represents the value 0 (the value
-3.5 is a root of the polynomial). You can assign the result of evaluating this expression
to a variable or use it in other expressions.

You can dot index into the result of any method that returns a result for which dot
indexing is defined, such as an object or structure which can be indexed using a property
or field name. You must include the parentheses in all indexing expressions even if there
are no arguments. For example, to index into the result of a call to the polyEval()
constructor with no inputs, use this expression.

 polyEval().Result

 Method Invocation

9-19

For more information on indexing into the result of function calls, see “Indexing into
Function Call Results”.

Controlling Access to Methods
There can be situations where you want to create methods for internal computation
within the class, but do not want to publish these methods as part of the public interface
to the class. In these cases, you can use the Access attribute to set the access to one of
the following options:

• public — Any code having access to an object of the class can access this method
(the default).

• private — Restricts method access to the defining class, excluding subclasses.
Subclasses do not inherit private methods.

• protected — Restricts method access to the defining class and subclasses derived
from the defining class. Subclasses inherit this method.

• Access list — Restricts method access to classes in access list. For more information,
see “Class Members Access” on page 12-28

Local and nested functions inside the method files have the same access as the method.
Local functions inside a class-definition file have private access to the class defined in the
same file.

Invoking Superclass Methods in Subclass Methods
A subclass can override the implementation of a method defined in a superclass. If the
subclass method needs to execute additional code instead of completely replacing the
superclass method. MATLAB classes can use a special syntax for invocation of superclass
methods from a subclass implementation for the same-named method.

The syntax to call a superclass method in a subclass class uses the @ symbol:

MethodName@SuperclassName

For example, the following disp method is defined for a Stock class that is derived from
an Asset class. The method first calls the Asset class disp method, passing the Stock
object so that the Asset components of the Stock object can be displayed. After the
Asset disp method returns, the Stock disp method displays the two Stock properties:
classdef Stock < Asset
 methods

9 Methods — Defining Class Operations

9-20

 function disp(s)
 disp@Asset(s) % Call base class disp method first
 fprintf(1,'Number of shares: %g\nShare price: %3.2f\n',...
 s.NumShares,s.SharePrice);
 end % disp
 end
end

Limitations of Use

The following restrictions apply to calling superclass methods. You can use this notation
only within:

• A method having the same name as the superclass method you are invoking
• A class that is a subclass of the superclass whose method you are invoking

Invoking Built-In Functions
The MATLAB builtin function enables you to call the built-in version of a function that
has been overloaded by a method.

See Also

More About
• “Object Precedence in Method Invocation” on page 9-48
• “Class Precedence” on page 6-23

 See Also

9-21

Class Constructor Methods
In this section...
“Purpose of Class Constructor Methods” on page 9-22
“Basic Structure of Constructor Methods” on page 9-22
“Guidelines for Constructors” on page 9-24
“Default Constructor” on page 9-24
“When to Define Constructors” on page 9-25
“Related Information” on page 9-25
“Initializing Objects in Constructor” on page 9-25
“No Input Argument Constructor Requirement” on page 9-26
“Subclass Constructors” on page 9-27
“Implicit Call to Inherited Constructor” on page 9-30
“Errors During Class Construction” on page 9-30
“Output Object Suppressed” on page 9-31

Purpose of Class Constructor Methods
A constructor method is a special function that creates an instance of the class. Typically,
constructor methods accept input arguments to assign the data stored in properties and
return an initialized object.

For a basic example, see “Create a Simple Class” on page 2-2.

All MATLAB classes have a default constructor method. This method returns an object of
the class that is created with no input arguments. A class can define a constructor method
that overrides the default constructor. An explicitly defined constructor can accept input
arguments, initialize property values, call other methods, and perform other operations
necessary to create objects of the class.

Basic Structure of Constructor Methods
Constructor methods can be structured into three basic sections:

• Pre-initialization — Compute arguments for superclass constructors.

9 Methods — Defining Class Operations

9-22

• Object initialization — Call superclass constructors.
• Post initialization — Perform any operations related to the subclass, including

referencing and assigning to the object, call class methods, passing the object to
functions, and so on.

This code illustrates the basic operations performed in each section:

classdef ConstructorDesign < BaseClass1
 properties
 ComputedValue
 end
 methods
 function obj = ConstructorDesign(a,b,c)

 %% Pre Initialization %%
 % Any code not using output argument (obj)
 if nargin == 0
 % Provide values for superclass constructor
 % and initialize other inputs
 a = someDefaultValue;
 args{1} = someDefaultValue;
 args{2} = someDefaultValue;
 else
 % When nargin ~= 0, assign to cell array,
 % which is passed to supclass constructor
 args{1} = b;
 args{2} = c;
 end
 compvalue = myClass.staticMethod(a);

 %% Object Initialization %%
 % Call superclass constructor before accessing object
 % You cannot conditionalize this statement
 obj = obj@BaseClass1(args{:});

 %% Post Initialization %%
 % Any code, including access to object
 obj.classMethod(arg);
 obj.ComputedValue = compvalue;
 ...
 end
 ...
 end

 Class Constructor Methods

9-23

...
end

Call the constructor like any function, passing arguments and returning an object of the
class.

obj = ConstructorDesign(a,b,c);

Guidelines for Constructors
• The constructor has the same name as the class.
• The constructor can return multiple arguments, but the first output must be the object

created.
• If you do not want to assign the output argument, you can clear the object variable in

the constructor (see “Output Object Suppressed” on page 9-31).
• If you create a class constructor, ensure it can be called with no input arguments. See

“No Input Argument Constructor Requirement” on page 9-26.
• If your constructor makes an explicit call to a superclass constructor, this call must

occur before any other reference to the constructed object and cannot occur after a
return statement.

• Calls to superclass constructors cannot be conditional. You cannot place superclass
construction calls in loops, conditions, switches, try/catch, or nested functions. See
“No Conditional Calls to Superclass Constructors” on page 9-28 for more
information.

Default Constructor
If a class does not define a constructor, MATLAB supplies a default constructor that takes
no arguments and returns a scalar object whose properties are initialized to property
default values. The default constructor supplied by MATLAB also calls all superclass
constructors with no arguments or with any argument passed to the default subclass
constructor.

When a subclass does not define a constructor, the default constructor passes its inputs to
the direct superclass constructor. This behavior is useful when there is no need for a
subclass to define a constructor, but the superclass constructor does require input
arguments.

9 Methods — Defining Class Operations

9-24

When to Define Constructors
Define a constructor method to perform object initialization that a default constructor
cannot perform. For example, when creating an object of the class requires:

• Input arguments
• Initializing object state, such as property values, for each instance of the class
• Calling the superclass constructor with values that are determined by the subclass

constructor

Related Information
For information specific to constructing enumerations, see “Enumeration Class
Constructor Calling Sequence” on page 14-8.

For information on creating object arrays in the constructor, see “Construct Object
Arrays” on page 10-2.

If the class being created is a subclass, MATLAB calls the constructor of each superclass
class to initialize the object. Implicit calls to the superclass constructor are made with no
arguments. If superclass constructors require arguments, call them from the subclass
constructor explicitly. See “Control Sequence of Constructor Calls” on page 12-14

Initializing Objects in Constructor
Constructor methods return an initialized object as an output argument. The output
argument is created when the constructor executes, before executing the first line of
code.

For example, the following constructor can assign the value of the object's property A as
the first statement because the object obj has already been assigned to an instance of
MyClass.

function obj = MyClass(a,b,c)
 obj.A = a;
 ...
end

You can call other class methods from the constructor because the object is already
initialized.

 Class Constructor Methods

9-25

The constructor also creates an object whose properties have their default values —
either empty ([]) or the default value specified in the property definition block.

For example, this constructor operates on the input arguments to assign the value of the
Value property.

function obj = MyClass(a,b,c)
 obj.Value = (a + b) / c;
 ...
end

Referencing the Object in a Constructor

When initializing the object, for example, by assigning values to properties, use the name
of the output argument to refer to the object within the constructor. For example, in the
following code the output argument is obj and the object is reference as obj:

% obj is the object being constructed
function obj = MyClass(arg)
 obj.propert1 = arg*10;
 obj.method1;
 ...
end

For more information on defining default property values, see “Property Default Values”
on page 8-18.

No Input Argument Constructor Requirement
There are cases where the constructor must be able to be called with no input argument:

• When loading objects into the workspace, if the class ConstructOnLoad attribute is
set to true, the load function calls the class constructor with no arguments.

• When creating or expanding an object array such that not all elements are given
specific values, the class constructor is called with no arguments to fill in unspecified
elements (for example, x(10,1) = MyClass(a,b,c);). In this case, the constructor
is called once with no arguments to populate the empty array elements (x(1:9,1))
with copies of this one object.

If there are no input arguments, the constructor creates an object using only default
properties values. A good practice is to add a check for zero arguments to the class
constructor to prevent an error if either of these two cases occur:

9 Methods — Defining Class Operations

9-26

function obj = MyClass(a,b,c)
 if nargin > 0
 obj.A = a;
 obj.B = b;
 obj.C = c;
 ...
 end
end

For ways to handle superclass constructors, see “Basic Structure of Constructor
Methods” on page 9-22.

Subclass Constructors
Subclass constructors can call superclass constructors explicitly to pass arguments to the
superclass constructor. The subclass constructor must specify these arguments in the call
to the superclass constructor and must use the constructor output argument to form the
call. Here is the syntax:

classdef MyClass < SuperClass
 methods
 function obj = MyClass(a,b,c,d)
 obj@SuperClass(a,b);
 ...
 end
 end
end

The subclass constructor must make all calls to superclass constructors before any other
references to the object (obj). This restriction includes assigning property values or
calling ordinary class methods. Also, a subclass constructor can call a superclass
constructor only once.

Reference Only Specified Superclasses

If the classdef does not specify the class as a superclass, the constructor cannot call a
superclass constructor with this syntax. That is, subclass constructor can call only direct
superclass constructors listed in the classdef line.

classdef MyClass < SuperClass1 & SuperClass2

MATLAB calls any uncalled constructors in the left-to-right order in which they are
specified in the classdef line. MATLAB passes no arguments with these calls.

 Class Constructor Methods

9-27

No Conditional Calls to Superclass Constructors

Calls to superclass constructors must be unconditional. There can be only one call for a
given superclass. Initialize the superclass portion of the object by calling the superclass
constructors before using the object (for example, to assign property values or call class
methods).

To call a superclass constructor with different arguments that depend on some condition,
build a cell array of arguments and provide one call to the constructor.

For example, the Cube class constructor calls the superclass Shape constructor using
default values when the Cube constructor is called with no arguments. If the Cube
constructor is called with four input arguments, then pass upvector and viewangle to
the superclass constructor:

classdef Cube < Shape
 properties
 SideLength = 0
 Color = [0 0 0]
 end
 methods
 function cubeObj = Cube(length,color,upvector,viewangle)
 % Assemble superclass constructor arguments
 if nargin == 0
 super_args{1} = [0 0 1];
 super_args{2} = 10;
 elseif nargin == 4
 super_args{1} = upvector;
 super_args{2} = viewangle;
 else
 error('Wrong number of input arguments')
 end

 % Call superclass constructor
 cubeObj@Shape(super_args{:});

 % Assign property values if provided
 if nargin > 0
 cubeObj.SideLength = length;
 cubeObj.Color = color;
 end
 ...
 end
 ...

9 Methods — Defining Class Operations

9-28

 end
end

Zero or More Superclass Arguments

To support a syntax that calls the superclass constructor with no arguments, provide this
syntax explicitly.

Suppose in the case of the Cube class example, all property values in the Shape
superclass and the Cube subclass have default values specified in the class definitions.
Then you can create an instance of Cube without specifying any arguments for the
superclass or subclass constructors.

Here is how you can implement this behavior in the Cube constructor:

methods
 function cubeObj = Cube(length,color,upvector,viewangle)
 % Assemble superclass constructor arguments
 if nargin == 0
 super_args = {};
 elseif nargin == 4
 super_args{1} = upvector;
 super_args{2} = viewangle;
 else
 error('Wrong number of input arguments')
 end

 % Call superclass constructor
 cubeObj@Shape(super_args{:});

 % Assign property values if provided
 if nargin > 0
 cubeObj.SideLength = length;
 cubeObj.Color = color;
 end
 ...
 end
end

More on Subclasses

See “Design Subclass Constructors” on page 12-9 for information on creating
subclasses.

 Class Constructor Methods

9-29

Implicit Call to Inherited Constructor
MATLAB passes arguments implicitly from a default subclass constructor to the
superclass constructor. This behavior eliminates the need to implement a constructor
method for a subclass only to pass arguments to the superclass constructor.

For example, the following class constructor requires one input argument (a datetime
object), which the constructor assigns to the CurrentDate property.

classdef BaseClassWithConstr
 properties
 CurrentDate datetime
 end
 methods
 function obj = BaseClassWithConstr(dt)
 obj.CurrentDate = dt;
 end
 end
end

Suppose that you create a subclass of BaseClassWithConstr, but your subclass does
not require an explicit constructor method.

classdef SubclassDefaultConstr < BaseClassWithConstr
 ...
end

You can construct an object of the SubclassDefaultConstr by calling its default
constructor with the superclass argument:

obj = SubclassDefaultConstr(datetime);

For information on subclass constructors, see “Subclass Constructors” on page 9-27 and
“Default Constructor” on page 9-24.

Errors During Class Construction
For handle classes, MATLAB calls the delete method when an error occurs under the
following conditions:

• A reference to the object is present in the code prior to the error.
• An early return statement is present in the code before the error.

9 Methods — Defining Class Operations

9-30

MATLAB calls the delete method on the object, the delete methods for any objects
contained in properties, and the delete methods for any initialized base classes.

Depending on when the error occurs, MATLAB can call the class destructor before the
object is fully constructed. Therefore class delete methods must be able to operate on
partially constructed objects that might not have values for all properties. For more
information, see “Support Destruction of Partially Constructed Objects” on page 7-18.

For information on how objects are destroyed, see “Handle Class Destructor” on page 7-
16.

Output Object Suppressed
You can suppress the assignment of the class instance to the ans variable when no output
variable is assigned in a call to the constructor. This technique is useful for apps that
creates graphical interface windows that hold onto the constructed objects. These apps
do not need to return the object.

Use nargout to determine if the constructor has been called with an output argument.
For example, the class constructor for the MyApp class clears the object variable, obj, if
called with no output assigned:

classdef MyApp
 methods
 function obj = MyApp
 ...
 if nargout == 0
 clear obj
 end
 end
 ...
 end
end

When a class constructor does not return an object, MATLAB does not trigger the
meta.class InstanceCreated event.

 Class Constructor Methods

9-31

See Also

Related Examples
• “Simplifying the Interface with a Constructor” on page 3-22
• “Subclass Constructor Implementation” on page 12-11

9 Methods — Defining Class Operations

9-32

Static Methods
In this section...
“What Are Static Methods” on page 9-33
“Why Define Static Methods” on page 9-33
“Defining Static Methods” on page 9-33
“Calling Static Methods” on page 9-34
“Inheriting Static Methods” on page 9-34

What Are Static Methods
Static methods are associated with a class, but not with specific instances of that class.
These methods do not require an object of the class as an input argument. Therefore, you
can call static methods without creating an object of the class.

Why Define Static Methods
Static methods are useful when you do not want to create an instance of the class before
executing some code. For example, suppose you want to set up the MATLAB environment
or use the static method to calculate data required to create class instances.

Suppose that a class needs a value for pi calculated to particular tolerances. The class
could define its own version of the built-in pi function for use within the class. This
approach maintains the encapsulation of the class's internal workings, but does not
require an instance of the class to return a value.

Defining Static Methods
To define a method as static, set the methods block Static attribute to true. For
example:

classdef MyClass
 methods(Static)
 function p = pi(tol)
 [n d] = rat(pi,tol);
 p = n/d;
 end

 Static Methods

9-33

 end
end

Calling Static Methods
Invoke static methods using the name of the class followed by dot (.), then the name of
the method:

classname.staticMethodName(args,...)

Calling the pi method of MyClass in the previous section would require this statement:

value = MyClass.pi(.001);

You can also invoke static methods using an instance of the class, like any method:

obj = MyClass;
value = obj.pi(.001);

Inheriting Static Methods
Subclasses can redefine static methods unless the method's Sealed attribute is also set
to true in the superclass.

See Also

Related Examples
• “Implementing the AccountManager Class” on page 3-15

9 Methods — Defining Class Operations

9-34

Overload Functions in Class Definitions
In this section...
“Why Overload Functions” on page 9-35
“Implementing Overloaded MATLAB Functions” on page 9-35
“Rules for Naming to Avoid Conflicts” on page 9-37

Why Overload Functions
Classes can redefine MATLAB functions by implementing methods having the same name.
Overloading is useful when defining specialized types that you want to behave like
existing MATLAB types. For example, you can implement relational operations, plotting
functions, and other commonly used MATLAB functions to work with objects of your class.

You can also modify default behaviors by implementing specific functions that control
these behaviors. For more information on functions that modify default behaviors, see
“Methods That Modify Default Behavior” on page 18-2.

Implementing Overloaded MATLAB Functions
Class methods can provide implementations of MATLAB functions that operate only on
instances of the class. This restriction is possible because MATLAB can always identify to
which class an object belongs.

MATLAB uses the dominant argument to determine which version of a function to call. If
the dominant argument is an object, then MATLAB calls the method defined by the
object's class, if one exists.

In cases where a class defines a method with the same name as a global function, the
class's implementation of the function is said to overload the original global
implementation.

To overload a MATLAB function:

• Define a method with the same name as the function you want to overload.
• Ensure that the method argument list accepts an object of the class, which MATLAB

uses to determine which version to call.

 Overload Functions in Class Definitions

9-35

• Perform the necessary steps in the method to implement the function. For example,
access the object properties to manipulate data.

Generally, the method that overloads a function produces results similar to the MATLAB
function. However, there are no requirements regarding how you implement the
overloading method. The overloading method does not need to match the signature of the
overloaded function.

Note MATLAB does not support overloading functions using different signatures for the
same function name.

Overload the bar Function

It is convenient to overload commonly used functions to work with objects of your class.
For example, suppose that a class defines a property that stores data that you often
graph. The MyData class overrides the bar function and adds a title to the graph:

classdef MyData
 properties
 Data
 end
 methods
 function obj = MyData(d)
 if nargin > 0
 obj.Data = d;
 end
 end
 function bar(obj)
 y = obj.Data;
 bar(y,'EdgeColor','r');
 title('My Data Graph')
 end
 end
end

The MyData bar method has the same name as the MATLAB bar function. However, the
MyData bar method requires a MyData object as input. Because the method is
specialized for MyData objects, it can extract the data from the Data property and create
a specialized graph.

To use the bar method, create an object:

9 Methods — Defining Class Operations

9-36

y = rand(1,10);
md = MyData(y);

Call the method using the object:

bar(md)

You can also use dot notation:

md.bar

Implementing MATLAB Operators

Classes designed to implement new MATLAB data types typically define certain
operators, such as addition, subtraction, or equality.

For example, standard MATLAB addition (+) cannot add two polynomials because this
operation is not defined by simple addition. However, a polynomial class can define its
own plus method that the MATLAB language calls to perform addition of polynomial
objects when you use the + symbol:

p1 + p2

For information on overloading operators, see “Operator Overloading” on page 18-47.

Rules for Naming to Avoid Conflicts
The names of methods, properties, and events are scoped to the class. Therefore, adhere
to the following rules to avoid naming conflicts:

• You can reuse names that you have used in unrelated classes.
• You can reuse names in subclasses if the member does not have public or protected

access. These names then refer to entirely different methods, properties, and events
without affecting the superclass definitions

• Within a class, all names exist in the same name space and must be unique. A class
cannot define two methods with the same name and a class cannot define a local
function with the same name as a method.

• The name of a static method is considered without its class prefix. Thus, a static
method name without its class prefix cannot match the name of any other method.

 Overload Functions in Class Definitions

9-37

See Also

Related Examples
• “Dominant Argument in Overloaded Graphics Functions” on page 9-50
• “Class Support for Array-Creation Functions” on page 9-39

9 Methods — Defining Class Operations

9-38

Class Support for Array-Creation Functions
In this section...
“Extend Array-Creation Functions for Your Class” on page 9-39
“Which Syntax to Use” on page 9-40
“Implement Support for Array-Creation Functions” on page 9-41

Extend Array-Creation Functions for Your Class
There are several MATLAB functions that create arrays of a specific size and type, such as
ones and zeros. User-defined classes can add support for array-creation functions
without requiring the use of overloaded method syntax.

Class support for any of the array-creation functions enables you to develop code that you
can share with built-in and user-defined data types. For example, the class of the variable
x in the following code can be a built-in type during initial development, and then be
replaced by a user-defined class that transparently overloads zeros:

cls = class(x);
zArray = zeros(m,n,cls);

Array-creation functions create arrays of a specific type in two ways:

• Class name syntax — Specify class name that determines the type of array elements.
• Prototype object syntax — Provide a prototype object that the function uses to

determine the type and other characteristics of the array elements.

For example:

zArray = zeros(2,3,'uint8');

p = uint8([1 3 5 ; 2 4 6]);
zArray = zeros(2,3,'like',p);

After adding support for these functions to a class named MyClass, you can use similar
syntax with that class:

zArray = zeros(2,3,'MyClass');

Or pass an object of your class:

 Class Support for Array-Creation Functions

9-39

p = MyClass(...);
zArray = zeros(size(p),'like',p);

MATLAB uses these arguments to dispatch to the appropriate method in your class.

Array-Creation Functions That Support Overloading

The following functions support this kind of overloading.

Array-Creation Functions
ones
zeros
eye
nan (lowercase)
inf
true
false
cast
rand
randn
randi

Which Syntax to Use
To create an array of default objects, which require no input arguments for the
constructor, then use the class name syntax.

To create an array of objects with specific property values or if the constructor needs
other inputs, use the prototype object to provide this information.

Classes can support both the class name and the prototype object syntax.

You can implement a class name syntax with the true and false functions even though
these functions do not support that syntax by default.

9 Methods — Defining Class Operations

9-40

Class Name Method Called If Prototype Method Does Not Exist

If your class implements a class name syntax, but does not implement a prototype object
syntax for a particular function, you can still call both syntaxes. For example, if you
implement a static zeros method only, you can call:

zeros(...,'like',MyClass(...))

In the case in which you call the prototype object syntax, MATLAB first searches for a
method named zerosLike. If MATLAB cannot find this method, it calls for the zeros
static method.

This feature is useful if you only need the class name to create the array. You do not need
to implement both methods to support the complete array-creation function syntax. When
you implement only the class name syntax, a call to a prototype object syntax is the same
as the call to the class name syntax.

Implement Support for Array-Creation Functions
Use two separate methods to support an array-creation function. One method implements
the class name syntax and the other implements the prototype object syntax.

For example, to support the zeros function:

• Implement the class name syntax:

zeros(...,'ClassName')

As a Static method:

methods (Static)
 function z = zeros(varargin)
 ...
 end
end

• Implement the prototype object syntax:

zeros(...,'like',obj)

As a Hidden method with the char vector 'Like' appended to the name.

methods (Hidden)
 function z = zerosLike(obj,varargin)

 Class Support for Array-Creation Functions

9-41

 ...
 end
end

How MATLAB Interprets the Function Call

The special support for array-creation functions results from the interpretation of the
syntax.

• A call to the zeros function of this form:

zeros(...,'ClassName')

Calls the class static method with this syntax:

ClassName.zeros(varargin{1:end-1})
• A call to the zeros function of this form:

zeros(...,'like',obj)

Calls the class method with this syntax:

zerosLike(obj,varargin{1:end-2})

Support All Function Inputs

The input arguments to an array-creation function can include the dimensions of the
array the function returns and possibly other arguments. In general, there are three cases
that your methods must support:

• No dimension input arguments resulting in the return of a scalar. For example:

z = zeros('MyClass');
• One or more dimensions equal to or less than zero, resulting in an empty array. For

example:

z = zeros(2,0,'MyClass');
• Any number of valid array dimensions specifying the size of the array. For example:

z = zeros(2,3,5,'MyClass');

When the array-creation function calls your class method, it passes the input arguments,
excluding the class name or the literal 'like' and the object variable to your method.
You can implement your methods with these signatures:

9 Methods — Defining Class Operations

9-42

• zeros(varargin) for “class name” methods
• zeros(obj,varargin) for “like prototype object” methods

Sample Class

The Color class represents a color in a specific color space, such as, RGB, HSV, and so on.
The discussions in “Class Name Method Implementations” on page 9-43 and “Prototype
Object Method Implementation” on page 9-45 use this class as a basis for the overloaded
method implementations.

classdef Color
 properties
 ColorValues = [0,0,0]
 ColorSpace = 'RGB'
 end
 methods
 function obj = Color(cSpace,values)
 if nargin > 0
 obj.ColorSpace = cSpace;
 obj.ColorValues = values;
 end
 end
 end
end

Class Name Method Implementations

The zeros function strips the final ClassName char vector and uses it to form the call to
the static method in the Color class. The arguments passed to the static method are the
array dimension arguments.

Here is an implementation of a zeros method for the Color class. This implementation:

• Defines the zeros method as Static (required)
• Returns a scalar Color object if the call to zeros has no dimension arguments
• Returns an empty array if the call to zeros has any dimensions arguments equal to 0.
• Returns an array of default Color objects. Use repmat to create an array of the

dimensions specified by the call to zeros.

classdef Color
 ...
 methods (Static)

 Class Support for Array-Creation Functions

9-43

 function z = zeros(varargin)
 if (nargin == 0)
 % For zeros('Color')
 z = Color;
 elseif any([varargin{:}] <= 0)
 % For zeros with any dimension <= 0
 z = Color.empty(varargin{:});
 else
 % For zeros(m,n,...,'Color')
 % Use property default values
 z = repmat(Color,varargin{:});
 end
 end
 end
end

The zeros method uses default values for the ColorValues property because these
values are appropriate for this application. An implementation of a ones method can set
the ColorValues property to [1,1,1], for example.

Suppose that you want to overload the randi function to achieve the following objectives:

• Define each ColorValue property as a 1-by-3 array in the range of 1 to a specified
maximum value (for example, 1–255).

• Accommodate scalar, empty, and multidimensional array sizes.
• Return an array of Color objects of the specified dimensions, each with random

ColorValues.

classdef Color
 ...
 methods (Static)
 function r = randi(varargin)
 if (nargin == 0)
 % For randi('ClassName')
 r = Color('RGB',randi(255,[1,3]));
 elseif any([varargin{2:end}] <= 0)
 % For randi with any dimension <= 0
 r = Color.empty(varargin{2:end});
 else
 % For randi(max,m,n,...,'ClassName')
 if numel([varargin{:}]) < 2
 error('Not enough input arguments')
 end

9 Methods — Defining Class Operations

9-44

 dims = [varargin{2:end}];
 r = zeros(dims,'Color');
 for k = 1:prod(dims)
 r(k) = Color('RGB',randi(varargin{1},[1,3]));
 end
 end
 end
 end
end

Prototype Object Method Implementation

The objective of a method that returns an array of objects that are “like a prototype
object” depends on the requirements of the class. For the Color class, the zeroLike
method creates objects that have the ColorSpace property value of the prototype object,
but the ColorValues are all zero.

Here is an implementation of a zerosLike method for the Color class. This
implementation:

• Defines the zerosLike method as Hidden
• Returns a scalar Color object if the call to the zeros function has no dimension

arguments
• Returns an empty array if the call to the zeros function has any dimension arguments

that are negative or equal to 0.
• Returns an array of Color objects of the dimensions specified by the call to the zeros

function.

classdef Color
 ...
 methods (Hidden)
 function z = zerosLike(obj,varargin)
 if nargin == 1
 % For zeros('like',obj)
 cSpace = obj.ColorSpace;
 z = Color;
 z.ColorSpace = cSpace;
 elseif any([varargin{:}] <= 0)
 % For zeros with any dimension <= 0
 z = Color.empty(varargin{:});
 else
 % For zeros(m,n,...,'like',obj)
 if ~isscalar(obj)
 error('Prototype object must be scalar')
 end
 obj = Color(obj.ColorSpace,zeros(1,3,'like',obj.ColorValues));

 Class Support for Array-Creation Functions

9-45

 z = repmat(obj,varargin{:});
 end
 end
 end
end

Full Class Listing

Here is the Color class definition with the overloaded methods.

Note In actual practice, the Color class requires error checking, color space
conversions, and so on. This overly simplified version illustrates the implementation of the
overloaded methods.

classdef Color
 properties
 ColorValues = [0,0,0]
 ColorSpace = 'RGB'
 end
 methods
 function obj = Color(cSpace,values)
 if nargin > 0
 obj.ColorSpace = cSpace;
 obj.ColorValues = values;
 end
 end
 end
 methods (Static)
 function z = zeros(varargin)
 if (nargin == 0)
 % For zeros('ClassName')
 z = Color;
 elseif any([varargin{:}] <= 0)
 % For zeros with any dimension <= 0
 z = Color.empty(varargin{:});
 else
 % For zeros(m,n,...,'ClassName')
 % Use property default values
 z = repmat(Color,varargin{:});
 end
 end
 function r = randi(varargin)
 if (nargin == 0)
 % For randi('ClassName')
 r = Color('RGB',randi(255,[1,3]));
 elseif any([varargin{2:end}] <= 0)
 % For randi with any dimension <= 0
 r = Color.empty(varargin{2:end});
 else
 % For randi(max,m,n,...,'ClassName')
 if numel([varargin{:}]) < 2

9 Methods — Defining Class Operations

9-46

 error('Not enough input arguments')
 end
 dims = [varargin{2:end}];
 r = zeros(dims,'Color');
 for k = 1:prod(dims)
 r(k) = Color('RGB',randi(varargin{1},[1,3]));
 end
 end
 end
 end
 methods (Hidden)
 function z = zerosLike(obj,varargin)
 if nargin == 1
 % For zeros('like',obj)
 cSpace = obj.ColorSpace;
 z = Color;
 z.ColorSpace = cSpace;
 elseif any([varargin{:}] <= 0)
 % For zeros with any dimension <= 0
 z = Color.empty(varargin{:});
 else
 % For zeros(m,n,...,'like',obj)
 if ~isscalar(obj)
 error('Prototype object must be scalar')
 end
 obj = Color(obj.ColorSpace,zeros(1,3,'like',obj.ColorValues));
 z = repmat(obj,varargin{:});
 end
 end
 end
end

See Also

Related Examples
• “Construct Object Arrays” on page 10-2

 See Also

9-47

Object Precedence in Method Invocation
In this section...
“Object Precedence” on page 9-48
“Defining Precedence” on page 9-49

Object Precedence
Establishing an object precedence enables MATLAB to determine which of possibly many
versions of an operator or function to call in a given situation.

For example, consider the expression

objectA + objectB

Ordinarily, objects have equal precedence and the method associated with the leftmost
object is called. However, there are two exceptions:

• Classes defined with the classdef syntax have precedence over these MATLAB
classes:

double, single, int64, uint64, int32, uint32, int16, uint16, int8, uint8,
char, string, logical, cell, struct, and function_handle.

• Classes defined with the classdef syntax can specify their relative precedence with
respect to other classes using the InferiorClasses attribute.

Consider the example in “Representing Polynomials with Classes” on page 20-2. The
DocPolynom class defines a plus method that enables the addition of DocPolynom
objects. Given the object p:

p = DocPolynom([1 0 -2 -5])
p =
 x^3-2*x-5

the expression:

1 + p
ans =
 x^3-2*x-4

9 Methods — Defining Class Operations

9-48

calls the DocPolynom plus method (which converts the double, 1, to a DocPolynom
object and then implements the addition of two polynomials). The DocPolynom class has
precedence over the built-in double class.

Defining Precedence
You can specify the relative precedence of classes defined with the classdef syntax by
listing inferior classes in a class attribute. The InferiorClasses property places a class
below other classes in the precedence hierarchy. Define the InferiorClasses property
in the classdef statement:
classdef (InferiorClasses = {?class1,?class2}) myClass

This attribute establishes a relative priority of the class being defined with the order of
the classes listed.

Location in the Hierarchy

If objectA is above objectB in the precedence hierarchy, then the expression

objectA + objectB

calls @classA/plus.m. Conversely, if objectB is above objectA in the precedence
hierarchy, then MATLAB calls @classB/plus.m.

See Also

More About
• “Dominant Argument in Overloaded Graphics Functions” on page 9-50
• “Class Precedence” on page 6-23

 See Also

9-49

Dominant Argument in Overloaded Graphics Functions

In this section...
“Graphics Object Precedence” on page 9-50
“Dominant Argument” on page 9-50
“Defining Class Precedence” on page 9-50
“Calls to Inferior-Class Methods” on page 9-52

Graphics Object Precedence
MATLAB graphics objects have the same precedence as objects of classes defined using
the classdef syntax. If you want to implement a method that accepts a graphics object
as its first argument (for example, an axes handle), but dispatches to the method of your
class, define the MATLAB graphics class as inferior to your class.

Dominant Argument
When evaluating expression involving objects of more than one class, MATLAB uses the
dominant argument to determine which method or function to call.

Here is how MATLAB dispatches in response to a function call:

• Determine the dominant argument based on the class of arguments.
• If there is a dominant argument, call the method of the dominant class.
• If arguments are of equal precedence, use the leftmost argument as the dominant

argument.
• If the class of the dominant argument does not define a method with the name of the

called function, call the first function on the path with that name.

Defining Class Precedence
Specify the relative precedence of MATLAB classes using the InferiorClasses class
attribute. Here is the basic syntax:

classdef (InferiorClasses = {?class1,?class2}) ClassName

9 Methods — Defining Class Operations

9-50

The following definition of the TemperatureData class implements a specialized version
of plot to graph temperature data. The class plot method supports a variable number of
input arguments to allow an axes handle as the first argument:

plot(obj)
plot(ax,obj)

obj is an instance of the TemperatureData class and ax is an axes handle.

MATLAB calls the plot method in both cases because the TemperatureData class
specifies the matlab.graphics.axis.Axes as inferior.
classdef (InferiorClasses = {?matlab.graphics.axis.Axes}) TemperatureData
 properties
 Time
 Temperature
 end
 methods
 function obj = TemperatureData(x,y)
 obj.Time = x;
 obj.Temperature = y;
 end
 function plot(varargin)
 if nargin == 1
 obj = varargin{1};
 plot(obj.Time,obj.Temperature)
 elseif nargin == 2
 ax = varargin{1};
 obj = varargin{2};
 plot(ax,obj.Time,obj.Temperature)
 elseif nargin > 2
 ax = varargin{1};
 obj = varargin{2};
 plot(ax,obj.Time,obj.Temperature,varargin{3:end})
 end
 datetick('x')
 xlabel('Time')
 ylabel('Temperature')
 end
 end
end

The following call to plot dispatches to the TemperatureData plot method, not the
built-in plot function, because the TemperatureData object is dominant over the axes
object.

x = 1:10;
y = rand(1,10)*100;
ax = axes;
td = TemperatureData(x,y);
plot(ax,td)

 Dominant Argument in Overloaded Graphics Functions

9-51

Calls to Inferior-Class Methods
When you declare a class as inferior to your class, and both classes define a method with
the same name, MATLAB dispatches to your class method regardless of argument order.

Suppose the TemperatureData class that is described in the previous section defines a
set method. If you attempt to assign an object of the TemperatureData class to the
UserData property of an axes object:

td = TemperatureData(x,y);
set(gca,'UserData',td)

The results is a call to the TemperatureData set method. MATLAB does not call the
built-in set function.

To support the use of a set function with inferior classes, implement a set method in
your class that calls the built-in set function when the first argument is an object of the
inferior class.

function set(varargin)
 if isa(varargin{1},'matlab.graphics.axis.Axes')
 builtin('set',varargin{:})
 else
 ...
end

See Also

More About
• “Object Precedence in Method Invocation” on page 9-48

9 Methods — Defining Class Operations

9-52

Class Methods for Graphics Callbacks
In this section...
“Referencing the Method” on page 9-53
“Syntax for Method Callbacks” on page 9-53
“Use a Class Method for a Slider Callback” on page 9-54

Referencing the Method
To use an ordinary class method as callback for a graphics object, specify the callback
property as a function handle referencing the method. For example,

uicontrol('Style','slider','Callback',@obj.sliderCallback)

Where your class defines a method called sliderCallback and obj is an instance of
your class.

To use a static method as a callback, specify the callback property as a function handle
that includes the class name that is required to refer to a static method:

uicontrol('Style','slider','Callback',@MyClass.sliderCallback)

Syntax for Method Callbacks
For ordinary methods, use dot notation to pass an instance of the class defining the
callback as the first argument:

@obj.methodName

Define the callback method with the following input arguments:

• An instance of the defining class as the first argument
• The event source handle
• The event data

The function signature would be of this form:

function methodName(obj,src,eventData)
 ...
end

 Class Methods for Graphics Callbacks

9-53

For static methods, the required class name ensures MATLAB dispatches to the method of
the specified class:

@MyClass.methodName

Define the static callback method with two input arguments — the event source handle
and the event data

The function signature would be of this form:

function methodName(src,eventData)

Passing Extra Arguments

If you want to pass arguments to your callback in addition to the source and event data
arguments passed by MATLAB, you can use an anonymous function. The basic syntax for
an anonymous function that you assign to the graphic object's Callback property
includes the object as the first argument:

@(src,event)callbackMethod(object,src,eventData,arg1,...argn)

The function signature would be of this form:

function methodName(obj,src,eventData,varargin)
 ...
end

Use a Class Method for a Slider Callback
This example shows how to use a method of your class as a callback for an uicontrol
slider.

The SeaLevelSlider class creates a slider that varies the color limits of an indexed
image to give the illusion of varying the sea level.

Class Definition

Define SeaLevelSlider as a handle class with the following members:

• The class properties store figure and axes handles and the calculated color limits.
• The class constructor creates the graphics objects and assigns the slider callback.

9 Methods — Defining Class Operations

9-54

• The callback function for the slider accepts the three required arguments — a class
instance, the handle of the event source, and the event data. The event data argument
is empty and not used.

• The uicontrol callback uses dot notation to reference the callback
method: ...'Callback',@obj.sliderCallback.

classdef SeaLevelSlider < handle
 properties
 Figure
 Axes
 CLimit
 end

 methods
 function obj = SeaLevelSlider(x,map)
 obj.Figure = figure('Colormap',map,...
 'Position',[100,100,560,580],...
 'Resize','off');
 obj.Axes = axes('DataAspectRatio',[1,1,1],...
 'XLimMode','manual','YLimMode','manual',...
 'Parent',obj.Figure);
 image(x,'CDataMapping','scaled',...
 'Parent',obj.Axes);
 obj.CLimit = get(obj.Axes,'CLim');
 uicontrol('Style','slider',...
 'Parent',obj.Figure,...
 'Max',obj.CLimit(2)-10,...
 'Min',obj.CLimit(1)-1,...
 'Value',obj.CLimit(1),...
 'Units','normalized',...
 'Position',[0.9286,0.1724,0.0357,0.6897],...
 'SliderStep',[0.003,0.005],...
 'Callback',@obj.sliderCallback);
 end

 function sliderCallback(obj,src,~)
 minVal = get(src,'Value');
 maxVal = obj.CLimit(2);
 obj.Axes.CLim = [minVal maxVal];
 end
 end
end

 Class Methods for Graphics Callbacks

9-55

Using the SeaLevelAdjuster Class

The class uses the cape image that is included with the MATLAB product. To obtain the
image data, use the load command:

load cape X map

After loading the data, create a SeaLevelSlider object for the image:

slaObj = SeaLevelSlider(X,map);

Move the slider to change the color mapping and visualize a rise in sea level.

50 100 150 200 250 300 350

50

100

150

200

250

300

350

9 Methods — Defining Class Operations

9-56

See Also

More About
• “Listener Callback Syntax” on page 11-30

 See Also

9-57

Object Arrays

• “Construct Object Arrays” on page 10-2
• “Initialize Object Arrays” on page 10-5
• “Empty Arrays” on page 10-8
• “Initialize Arrays of Handle Objects” on page 10-11
• “Accessing Dynamic Properties in Arrays” on page 10-14
• “Implicit Class Conversion” on page 10-16
• “Concatenating Objects of Different Classes” on page 10-18
• “Designing Heterogeneous Class Hierarchies” on page 10-24
• “Heterogeneous Array Constructors” on page 10-34

10

Construct Object Arrays
In this section...
“Build Arrays in the Constructor” on page 10-2
“Referencing Property Values in Object Arrays” on page 10-3

Build Arrays in the Constructor
A class constructor can create an array by building the array and returning it as the
output argument.

For example, the ObjectArray class creates an object array that is the same size as the
input array. Then it initializes the Value property of each object to the corresponding
input array value.

classdef ObjectArray
 properties
 Value
 end
 methods
 function obj = ObjectArray(F)
 if nargin ~= 0
 m = size(F,1);
 n = size(F,2);
 obj(m,n) = obj;
 for i = 1:m
 for j = 1:n
 obj(i,j).Value = F(i,j);
 end
 end
 end
 end
 end
end

To preallocate the object array, assign the last element of the array first. MATLAB fills the
first to penultimate array elements with the ObjectArray object.

After preallocating the array, assign each object Value property to the corresponding
value in the input array F. To use the class:

10 Object Arrays

10-2

• Create 5-by-5 array of magic square numbers
• Create a 5-by-5 object array

F = magic(5);
A = ObjectArray(F);
whos

 Name Size Bytes Class Attributes

 A 5x5 304 ObjectArray
 F 5x5 200 double

Referencing Property Values in Object Arrays
Given an object array objArray in which each object has a property PropName:

• Reference the property values of specific objects using array indexing:

objArray(ix).PropName

• Reference all values of the same property in an object array using dot notation.
MATLAB returns a comma-separated list of property values.

objArray.PropName

• To assign the comma-separated list to a variable, enclose the right-side expression in
brackets:

values = [objArray.PropName]

For example, given the ObjProp class:

classdef ObjProp
 properties
 RegProp
 end
 methods
 function obj = ObjProp
 obj.RegProp = randi(100);
 end
 end
end

Create an array of ObjProp objects:

 Construct Object Arrays

10-3

for k = 1:5
 objArray(k) = ObjProp;
end

Access the RegProp property of the second element of the object array using array
indexing:

objArray(2).RegProp

ans =

 91

Assign the values of all RegProp properties to a numeric array:

propValues = [objArray.RegProp]

propValues =

 82 91 13 92 64

Use standard indexing operations to access the values of the numeric array. For more
information on numeric arrays, see “Matrices and Arrays”.

See Also

Related Examples
• “Initialize Object Arrays” on page 10-5
• “Initialize Arrays of Handle Objects” on page 10-11
• “Class Constructor Methods” on page 9-22

10 Object Arrays

10-4

Initialize Object Arrays
In this section...
“Calls to Constructor” on page 10-5
“Initial Value of Object Properties” on page 10-6

Calls to Constructor
During the creation of object arrays, MATLAB can call the class constructor with no
arguments, even if the constructor does not build an object array. For example, suppose
that you define the following class:

classdef SimpleValue
 properties
 Value
 end
 methods
 function obj = SimpleValue(v)
 obj.Value = v;
 end
 end
end

Execute the following statement to create an array:

a(1,7) = SimpleValue(7)

Error using SimpleValue (line 7)
Not enough input arguments.

This error occurs because MATLAB calls the constructor with no arguments to initialize
elements 1 through 6 in the array.

Your class must support the no input argument constructor syntax. A simple solution is to
test nargin and let the case when nargin == 0 execute no code, but not error:

classdef SimpleValue
 properties
 Value
 end
 methods
 function obj = SimpleValue(v)

 Initialize Object Arrays

10-5

 if nargin > 0
 obj.Value = v;
 end
 end
 end
end

Using the revised class definition, the previous array assignment statement executes
without error:

a(1,7) = SimpleValue(7)

a =

 1x7 SimpleValue array with properties:

 Value

The object assigned to array element a(1,7) uses the input argument passed to the
constructor as the value assigned to the property:

a(1,7)

ans =
 SimpleValue with properties:

 Value: 7

MATLAB created the objects contained in elements a(1,1:6) with no input argument.
The default value for properties empty []. For example:

a(1,1)

ans =
 SimpleValue with properties:

 Value: []

MATLAB calls the SimpleValue constructor once and copies the returned object to each
element of the array.

Initial Value of Object Properties
When MATLAB calls a constructor with no arguments to initialize an object array, one of
the following assignments occurs:

10 Object Arrays

10-6

• If property definitions specify default values, MATLAB assigns these values.
• If the constructor assigns values in the absence of input arguments, MATLAB assigns

these values.
• If neither of the preceding situations apply, MATLAB assigns the value of empty double

(that is, []) to the property.

See Also

Related Examples
• “Initialize Arrays of Handle Objects” on page 10-11

 See Also

10-7

Empty Arrays
In this section...
“Creating Empty Arrays” on page 10-8
“Assigning Values to an Empty Array” on page 10-8

Creating Empty Arrays
Empty arrays have no elements, but are of a certain class. All nonabstract classes have a
static method named empty that creates an empty array of the same class. The empty
method enables you to specify the dimensions of the output array. However, at least one
of the dimensions must be 0. For example, define the SimpleValue class:

classdef SimpleValue
 properties
 Value
 end
 methods
 function obj = SimpleValue(v)
 if nargin > 0
 obj.Value = v;
 end
 end
 end
end

Create a 5–by–0 empty array of class SimpleValue.

ary = SimpleValue.empty(5,0)

ary =

 5x0 SimpleValue array with properties:

 Value

Calling empty with no arguments returns a 0–by–0 empty array.

Assigning Values to an Empty Array
An empty object defines the class of an array. To assign nonempty objects to an empty
array, MATLAB calls the class constructor to create default instances of the class for

10 Object Arrays

10-8

every other array element. Once you assign a nonempty object to an array, all array
elements must be nonempty objects.

Note A class constructor must avoid returning empty objects by default.

For example, using the SimpleValue defined in the “Initialize Object Arrays” on page 10-
5 section, create an empty array:

ary = SimpleValue.empty(5,0);
class(ary)

ans =

SimpleValue

ary is an array of class SimpleValue. However, it is an empty array:

ary(1)

Index exceeds matrix dimensions.

If you make an assignment to a property value, MATLAB calls the SimpleClass
constructor to grow the array to the require size:

ary(5).Value = 7;
ary(5).Value

ans =

 7

ary(1).Value

ans =

 []

MATLAB populates array elements one through five with SimpleValue objects created
by calling the class constructor with no arguments. Then MATLAB assigns the property
value 7 to the object at ary(5).

 Empty Arrays

10-9

See Also

Related Examples
• “Initialize Arrays of Handle Objects” on page 10-11

10 Object Arrays

10-10

Initialize Arrays of Handle Objects
When initializing an array of handle objects, MATLAB fills in the empty elements of an
array with a default object. To create the default object, MATLAB:

• Calls the class constructor once to obtain an object
• Creates unique handles for each element in the array
• Copies the property values from the constructed default object without calling the

constructor again.

The InitHandleArray class illustrates this behavior.

classdef InitHandleArray < handle
 properties
 RandNumb
 end
 methods
 function obj = InitHandleArray
 obj.RandNumb = randi(100);
 end
 end
end

The property RandNumb contains a random number that the InitHandleArray
constructor assigns.

Consider what happens when MATLAB initialize an array created by assigning to the last
element in the array. (The last element is the one with the highest index values). Suppose
the value of the RandNumb property of the InitHandleArray object assigned to the
element A(4,5) is 59:

A(4,5) = InitHandleArray;
A(4,5).RandNumb

ans =

 59

The element in the index location A(4,5) is an instance of the InitHandleArray class.
The default object used for element A(1,1) is also an instance of the InitHandleArray
class, but its RandNumb property is set to a different random number.

 Initialize Arrays of Handle Objects

10-11

To fill in the preceding array elements, MATLAB calls the class constructor to create a
single object. MATLAB copies this object to all the remaining array elements. Calling the
constructor to create the default object resulted in another call to the randi function,
which returns a new random number:

A(1,1).RandNumb

ans =

 10

MATLAB copies this second instance to all remaining array elements:

A(2,2).RandNumb

ans =

 10

A(2,3).RandNumb

ans =

 10

When initializing an object array, MATLAB assigns a copy of a single object to the empty
elements in the array. MATLAB gives each object a unique handle so that later you can
assign different property values to each object. The objects are not equivalent:

A(1,1) == A(2,2)

ans =

 0

That is, the handle A(1,1) does not refer to the same object as A(2,2). The creation of
an array with a statement such as:

A(4,5) = InitHandleArray;

results in two calls to the class constructor. The first creates the object for array element
A(4,5). The second creates a default object that MATLAB copies to all remaining empty
array elements.

10 Object Arrays

10-12

Related Information
For information on array manipulation, see “Multidimensional Arrays”

See “Initializing Properties to Handle Objects” on page 8-19 for information on assigning
values to properties.

See “Object Array Indexing” on page 18-15 for information on implementing subsasgn
methods for your class.

 Initialize Arrays of Handle Objects

10-13

Accessing Dynamic Properties in Arrays
You cannot reference all the dynamic properties in an object array using a single
statement, as you can with ordinary properties. For example, the ObjectArrayDynamic
class subclasses the dynamicprops class.

classdef ObjectArrayDynamic < dynamicprops
 properties
 RegProp
 end
 methods
 function obj = ObjectArrayDynamic
 obj.RegProp = randi(100);
 end
 end
end

You can add dynamic properties to objects of the ObjectArrayDynamic class. Create an
object array and add dynamic properties to each member of the array. Define elements 1
and 2 as ObjectArrayDynamic objects:

a(1) = ObjectArrayDynamic;
a(2) = ObjectArrayDynamic;

Add dynamic properties to each object and assign a value.

a(1).addprop('DynoProp');
a(1).DynoProp = 1;
a(2).addprop('DynoProp');
a(2).DynoProp = 2;

Get the values of the ordinary properties, as with any array.

a.RegProp

ans =

 4

ans =

 85

However, MATLAB returns an error if you try to access the dynamic properties of all array
elements using this syntax.

10 Object Arrays

10-14

a.DynoProp

No appropriate method, property, or field 'DynoProp' for class
'ObjectArrayDynamic'.

Refer to each object individually to access dynamic property values:

a(1).DynoProp

ans =

 1

a(2).DynoProp

ans =

 2

For information about classes that can define dynamic properties, see “Dynamic
Properties — Adding Properties to an Instance” on page 8-71 .

 Accessing Dynamic Properties in Arrays

10-15

Implicit Class Conversion

In this section...
“Class Conversion Mechanism” on page 10-16
“Concatenation” on page 10-16
“Subscripted Assignment” on page 10-17

Class Conversion Mechanism
When you create or modify object arrays using concatenation or subscripted assignment,
MATLAB attempts to convert unlike types to conform to the class of the array.

To perform the conversion, MATLAB attempts to call a converter method defined by the
class to be converted. A converter method has the same name as the destination class.
For example, if a class defines a method named double, this method converts an object
of the class to an object of class double.

If no converter exists, MATLAB passes the object to be converted to the constructor of the
destination class.

Both concatenation and subscripted assignment can cause MATLAB to apply this class
conversion mechanism. The conversion can be successful or can result in an error if the
conversion is not possible.

Concatenation
In concatenation operations, the dominant object determines the class of the resulting
array. MATLAB determines the dominant object as follows:

• User-defined classes are dominant over built-in classes like double.
• If there is no defined dominance relationship between any two objects, then the left-

most object dominates

For example, in the statement C = [A,B], if A is the dominant object, MATLAB attempts
to convert B to the class of A.

10 Object Arrays

10-16

Subscripted Assignment
In subscripted assignment, the left side of the assignment statement defines the class of
the array. If you assign array elements when the right side is a different class than the left
side, MATLAB attempts to convert to the class of the left side.

For example, assigning an object of ClassB to an element of array A requires conversion.

A = ClassA;
B = ClassB;
A(2) = B;

MATLAB first looks for a converter method defined by the class of the source object B.
This converter method must have the name ClassA. The subscripted assignment is
effectively a call to the converter defined by ClassB:

A(2) = B.ClassA % Call method of ClassB

If no converter method exists, MATLAB passes the source object to the destination class
constructor:

A(2) = ClassA(B) % Call ClassA constructor

See Also

Related Examples
• “Valid Combinations of Unlike Classes”
• “Concatenating Objects of Different Classes” on page 10-18
• “Object Converters” on page 18-12

 See Also

10-17

Concatenating Objects of Different Classes

In this section...
“Basic Knowledge” on page 10-18
“MATLAB Concatenation Rules” on page 10-18
“Concatenating Objects” on page 10-19
“Calling the Dominant-Class Constructor” on page 10-19
“Converter Methods” on page 10-21

Basic Knowledge
The material presented in this section builds on an understanding of the information
presented in the following sections.

• “Construct Object Arrays” on page 10-2
• “Valid Combinations of Unlike Classes”

MATLAB Concatenation Rules
MATLAB follows these rules for concatenating objects:

• MATLAB always attempts to convert all objects to the dominant class.
• User-defined classes take precedence over built-in classes like double.
• If there is no defined dominance relationship between any two objects, then the left-

most object dominates (see “Class Precedence” on page 6-23).

When converting to a dominant class during concatenation or subscripted assignment,
MATLAB searches the non-dominant class for a conversion method that is the same name
as the dominant class. If such a conversion method exists, MATLAB calls it. If a
conversion method does not exist, MATLAB calls the dominant class constructor on the
non-dominant object.

It is possible for the dominant class to define horzcat, vertcat, or cat methods that
modify the default concatenation process.

10 Object Arrays

10-18

Note MATLAB does not convert objects to a common superclass unless those objects are
part of a heterogeneous hierarchy. For more information, see “Designing Heterogeneous
Class Hierarchies” on page 10-24.

Concatenating Objects
Concatenation combines objects into arrays:

ary = [obj1,obj2,obj3,...,objn];

The size of ary is 1-by-n.

ary = [obj1;obj2;obj3;...;objn];

The size of ary is n-by-1.

The class of the arrays is the same as the class of the objects being concatenated.
Concatenating objects of different classes is possible if MATLAB can convert objects to
the dominant class. MATLAB attempts to convert unlike objects by:

• Calling the inferior object converter method, if one exists.
• Passing an inferior object to the dominant class constructor to create an object of the

dominant class.

If conversion of the inferior object is successful, MATLAB returns an array that is of the
dominant class. If conversion is not possible, MATLAB returns an error.

Calling the Dominant-Class Constructor
MATLAB calls the dominant class constructor to convert an object of an inferior class to
the dominant class. MATLAB passes the inferior object to the constructor as an argument.
If the class design enables the dominant class constructor to accept objects of inferior
classes as input arguments, then concatenation is possible without implementing a
separate converter method.

If the constructor simply assigns this argument to a property, the result is an object of the
dominant class with an object of an inferior class stored in a property. If this assignment
is not a desired result, then ensure that class constructors include adequate error
checking.

 Concatenating Objects of Different Classes

10-19

For example, consider the class ColorClass and two subclasses, RGBColor and
HSVColor:

classdef ColorClass
 properties
 Color
 end
end

The class RGBColor inherits the Color property from ColorClass. RGBColor stores a
color value defined as a three-element vector of red, green, and blue (RGB) values. The
constructor does not restrict the value of the input argument. It assigns this value directly
to the Color property.

classdef RGBColor < ColorClass
 methods
 function obj = RGBColor(rgb)
 if nargin > 0
 obj.Color = rgb;
 end
 end
 end
end

The class HSVColor also inherits the Color property from ColorClass. HSVColor
stores a color value defined as a three-element vector of hue, saturation, brightness value
(HSV) values.

classdef HSVColor < ColorClass
 methods
 function obj = HSVColor(hsv)
 if nargin > 0
 obj.Color = hsv;
 end
 end
 end
end

Create an instance of each class and concatenate them into an array. The RGBColor
object is dominant because it is the leftmost object and neither class defines a dominance
relationship:

crgb = RGBColor([1 0 0]);
chsv = HSVColor([0 1 1]);

10 Object Arrays

10-20

ary = [crgb,chsv];
class(ary)

ans =

RGBColor

You can combine these objects into an array because MATLAB can pass the inferior object
of class HSVColor to the constructor of the dominant class. However, notice that the
Color property of the second RGBColor object in the array actually contains an
HSVColor object, not an RGB color specification:

ary(2).Color

ans =

 HSVColor with properties:

 Color: [0 1 1]

Avoid this undesirable behavior by:

• Implementing converter methods
• Performing argument checking in class constructors before assigning values to

properties

Converter Methods
If your class design requires object conversion, implement converter methods for this
purpose.

The ColorClass class defines converter methods for RGBColor and HSVColor objects:

classdef ColorClass
 properties
 Color
 end
 methods
 function rgbObj = RGBColor(obj)
 if isa(obj,'HSVColor')
 rgbObj = RGBColor(hsv2rgb(obj.Color));
 end
 end

 Concatenating Objects of Different Classes

10-21

 function hsvObj = HSVColor(obj)
 if isa(obj,'RGBColor')
 hsvObj = HSVColor(rgb2hsv(obj.Color));
 end
 end
 end
end

Create an array of RGBColor and HSVColor objects with the revised superclass:

crgb = RGBColor([1 0 0]);
chsv = HSVColor([0 1 1]);
ary = [crgb,chsv];
class(ary)

ans =

RGBColor

MATLAB calls the converter method for the HSVColor object, which it inherits from the
superclass. The second array element is now an RGBColor object with an RGB color
specification assigned to the Color property:

ary(2)

ans =

 RGBColor with properties:

 Color: [1 0 0]

ary(2).Color

ans =

 1 0 0

If the leftmost object is of class HSVColor, the array ary is also of class HSVColor, and
MATLAB converts the Color property data to HSV color specification.

ary = [chsv crgb]

ary =

 1x2 HSVColor

10 Object Arrays

10-22

 Properties:
 Color

ary(2).Color

ans =

 0 1 1

Defining a converter method in the superclass and adding better argument checking in
the subclass constructors produces more predicable results. Here is the RGBColor class
constructor with argument checking:

classdef RGBColor < ColorClass
 methods
 function obj = RGBColor(rgb)
 if nargin == 0
 rgb = [0 0 0];
 else
 if ~(isa(rgb,'double')...
 && size(rgb,2) == 3 ...
 && max(rgb) <= 1 && min(rgb) >= 0)
 error('Specify color as RGB values')
 end
 end
 obj.Color = rgb;
 end
 end
end

Your applications can require additional error checking and other coding techniques. The
classes in these examples are designed only to demonstrate concepts.

See Also

More About
• “Implicit Class Conversion” on page 10-16
• “Object Converters” on page 18-12
• “Hierarchies of Classes — Concepts” on page 12-2

 See Also

10-23

Designing Heterogeneous Class Hierarchies

In this section...
“Creating Classes That Support Heterogeneous Arrays” on page 10-24
“MATLAB Arrays” on page 10-24
“Heterogeneous Hierarchies” on page 10-25
“Heterogeneous Arrays” on page 10-25
“Heterogeneous Array Concepts” on page 10-26
“Nature of Heterogeneous Arrays” on page 10-26
“Unsupported Hierarchies” on page 10-29
“Default Object” on page 10-31
“Conversion During Assignment and Concatenation” on page 10-32
“Empty Arrays of Heterogeneous Abstract Classes” on page 10-32

Creating Classes That Support Heterogeneous Arrays
This topic describes the concepts involved in defining classes that support the formation
of heterogeneous arrays. For information on the concatenation of existing MATLAB
objects, see these topics.

• “Concatenating Objects of Different Classes” on page 10-18
• “Valid Combinations of Unlike Classes”

For an example that uses heterogeneous arrays, see “A Class Hierarchy for
Heterogeneous Arrays” on page 21-2.

MATLAB Arrays
MATLAB determines the class of an array by the class of the objects contained in the
array. MATLAB is unlike some languages in which you define an array of object pointers
or references. In these other languages, the type of the array is different from the type of
an object in the array. You can access the elements of the array and dispatch to methods
on those elements, but you cannot call an object method on the whole array, as you can in
MATLAB.

10 Object Arrays

10-24

Object arrays in MATLAB are homogeneous in class. Because of this homogeneity, you can
perform operations on whole arrays, such as multiplying numeric matrices. You can form
heterogeneous arrays by defining a hierarchy of classes that derive from a common
superclass. Cell arrays provide option for an array type that can hold different kinds of
unrelated objects.

Heterogeneous Hierarchies
You can form arrays of objects that are subclasses of a common superclass when these
classes are part of a heterogeneous hierarchy. A MATLAB heterogeneous class hierarchy:

• Derives from matlab.mixin.Heterogeneous
• Defines a single root superclass that derives directly from

matlab.mixin.Heterogeneous
• Seals methods that are inherited by subclasses.

For example, in the following diagram, Shape is the root of the heterogeneous hierarchy.

Heterogeneous Arrays
A heterogeneous array is an array of objects that differ in their specific class, but all
objects derive from or are instances of a common superclass. The common superclass
forms the root of the hierarchy of classes that you can combine into heterogeneous
arrays.

The common superclass must derive from matlab.mixin.Heterogeneous. Methods
that you can call on the array as a whole must have the same definitions for all
subclasses.

 Designing Heterogeneous Class Hierarchies

10-25

Heterogeneous hierarchies are useful to:

• Create arrays of objects that are of different classes, but part of a related hierarchy.
• Call methods of the most specific common superclass on the array as a whole
• Access properties of the most specific common superclass using dot notation with the

array
• Use common operators that are supported for object arrays
• Support array indexing (scalar or nonscalar) that returns arrays of the most specific

class

Heterogeneous Array Concepts
• Heterogeneous array — An array in which two or more elements belong to different
specific classes. All elements derive from the same root superclass.

• Root superclass — Class derived directly from matlab.mixin.Heterogeneous. The
root superclass can be abstract or concrete. Only concrete subclasses of the root
superclass can form heterogeneous arrays.

• Most specific common superclass — The most specific class in the inheritance
hierarchy from which all the objects in a heterogeneous array derive. The most
specific common superclass can be the root superclass or a more specific superclass
shared by the objects currently in the array.

• Class of a heterogeneous array — The most specific common superclass from which all
objects in the heterogeneous array derive. Adding and removing objects from a
heterogeneous array can change the most specific superclass shared by the instances.
This change results in a change in the class of a heterogeneous array. The most
specific common superclass can be abstract.

Nature of Heterogeneous Arrays
The heterogeneous hierarchy in this diagram illustrates the characteristics of
heterogeneous arrays concerning:

• Array class
• Property access
• Method invocation

10 Object Arrays

10-26

Class of Heterogeneous Arrays

The class of a heterogeneous array is that of the most specific superclass shared by the
objects of the array.

If the following conditions are true, the concatenation and subscripted assignment
operations return a heterogeneous array:

• The objects on the right side of the assignment statement are of different classes
• All objects on the right side of the assignment statement derive from a common

subclass of matlab.mixin.Heterogeneous

For example, form an array by concatenating objects of these classes. The class of a1 is
ClassA:

a1 = [SpecificA,SpecificB];
class(a1)

 Designing Heterogeneous Class Hierarchies

10-27

ans =

ClassA

If the array includes an object of the class SpecificC, the class of a2 is
RootSuperclass:

a2 = [SpecificA,SpecificB,SpecificC];
class(a2)

ans =

RootSuperclass

If you assigned an object of the class SpecificC to array a1 using indexing, the class of
a1 becomes RootSuperclass:

a1(3) = SpecificC;
class(a1)

ans =

RootSuperclass

If the array contains objects of only one class, then the array is not heterogeneous. For
example, the class of a is SpecificA.

a = [SpecificA,SpecificA];
class(a)

ans =

SpecificA

Property Access

Access array properties with dot notation when the class of the array defines the
properties. The class of the array is the most specific common superclass, which ensures
all objects inherit the same properties.

For example, suppose ClassA defines a property called Prop1.

a1 = [SpecificA,SpecificB];
a1.Prop1

10 Object Arrays

10-28

Referring to Prop1 using dot notation returns the value of Prop1 for each object in the
array.

Method Invocation

To invoke a method on a heterogeneous array, the class of the array must define or inherit
the method as Sealed. For example, suppose RootSuperclass defines a Sealed
method called superMethod.

Call the method on all objects in the array a2:

a2 = [SpecificA,SpecificB,SpecificC];
a2.superMethod

Sealing the method (so that it cannot be overridden in a subclass) ensures that the same
method definition exists for all elements of the array. Calling that method on a single
element of the array invokes the same method implementation as calling the method on
the whole array.

Unsupported Hierarchies
Heterogeneous hierarchies cannot have ambiguities when obtaining default objects,
determining the class of the array, and converting class objects to other types. Members
of the hierarchy can derive from only one root superclass (that is, from only one direct
subclass of matlab.mixin.Heterogeneous).

This diagram shows a hierarchy that is not allowed:

 Designing Heterogeneous Class Hierarchies

10-29

ClassA derives from two classes that are subclasses of
matlab.mixin.Heterogeneous.

The next diagram shows two separate heterogeneous hierarchies. ClassA has only one
root superclass (called OtherBaseClass). The heterogeneous hierarchy is no longer
ambiguous:

10 Object Arrays

10-30

Default Object
A default object is the object returned by calling the class constructor with no arguments.
MATLAB uses default objects in these situations:

• Indexed assignment creates an array with gaps in array elements. For example, assign
the first element of array h to index 5:

h(5) = ClassA(arg1,arg2);

MATLAB fills the unassigned positions with default objects.
• Loading a heterogeneous array from a MAT-file when the class definition of a specific

object in the array is not available. MATLAB replaces the object with the default
object.

 Designing Heterogeneous Class Hierarchies

10-31

Heterogeneous hierarchies enable you to define the default object for that hierarchy. The
matlab.mixin.Heterogeneous class provides a default implementation of a method
called getDefaultScalarElement. This method returns an instance of the root class of
the heterogeneous hierarchy, unless the root superclass is abstract.

If the root superclass is abstract or is not appropriate for a default object, override the
getDefaultScalarElement method. Implement the getDefaultScalarElement
override in the root superclass, which derives directly from
matlab.mixin.Heterogeneous.

getDefaultScalarElement must return a scalar object that is derived from the root
superclass. For specific information on how to implement this method, see
getDefaultScalarElement.

Conversion During Assignment and Concatenation
If you create a heterogeneous array that contains objects that are not derived from the
same root superclass, MATLAB attempts to call a method called convertObject.
Implement convertObject to convert objects to the appropriate class. There is no
default implementation of this method.

To support the formation of heterogeneous arrays using objects that are not part of the
heterogeneous hierarchy, implement a convertObject method in the root superclass.
The convertObject method must convert the nonmember object to a valid member of
the heterogeneous hierarchy.

For details on implementing the convertObject method, see
matlab.mixin.Heterogeneous.

Empty Arrays of Heterogeneous Abstract Classes
For homogeneous arrays, MATLAB does not allow you to initialize an empty array of an
abstract class. However, if the class is part of a heterogeneous hierarchy, you can
initialize empty arrays of an abstract class. Initializing an empty heterogeneous array is
useful in cases in which you do not know the class of the concrete elements in advance.

For example, suppose RootSuperclass is an abstract class that is the root of a
heterogeneous hierarchy. Initialize an array using the empty static method:

ary = RootSuperclass.empty;

10 Object Arrays

10-32

See Also

Related Examples
• “A Class Hierarchy for Heterogeneous Arrays” on page 21-2
• “Handle-Compatible Classes and Heterogeneous Arrays” on page 12-48

 See Also

10-33

Heterogeneous Array Constructors
In this section...
“Building Arrays in Superclass Constructors” on page 10-34
“When Errors Can Occur” on page 10-34
“Initialize Array in Superclass Constructor” on page 10-35
“Sample Implementation” on page 10-36
“Potential Error” on page 10-38

Building Arrays in Superclass Constructors
When a subclass in a heterogeneous class hierarchy calls its superclass to construct an
array of objects, you must ensure that the superclass constructor does not return a
heterogeneous array to the subclass. The following programming patterns show how to
avoid the errors caused by returning the wrong class to the subclass constructor.

When Errors Can Occur
Constructors must return objects that are the same class as the defining class. When
working with objects from a heterogeneous class hierarchy, the class of an object array
can change as you add array elements of different classes. As a result, heterogeneous
superclass constructors can change the class of object arrays when the class design
requires all the following techniques:

• Building object arrays in subclass constructors
• Calling superclass constructors from subclass constructors to pass arguments
• Creating object arrays in the superclass constructor

In addition, either of the following is true:

• The root superclass is not abstract and does not implement a
getDefaultScalarElement method.

• The root superclass implements a getDefaultScalarElement method that returns
an object that is not the same class as the subclass.

When assigning to object arrays, MATLAB uses the default object to fill in unassigned
array elements. In a heterogeneous hierarchy, the default object can be the superclass

10 Object Arrays

10-34

that is called by the subclass constructor. Therefore, building an array in the superclass
constructor can create a heterogeneous array.

If a superclass constructor returns a heterogeneous array to the subclass constructor,
MATLAB generates an error (see “Potential Error” on page 10-38).

Initialize Array in Superclass Constructor
To avoid errors, initialize the object array explicitly in the superclass constructor. For
example, use repelem in the superclass constructor to initialize the array before
initializing the superclass part of the objects. Initializing the array ensures that all
elements assigned into the array are of the same class as the obj argument.

In this code, the superclass constructor creates one object for each element in the input
argument, arg:

method
 function obj = SuperClass(arg)
 ...
 n = numel(arg);
 obj = repelem(obj,1,n);
 for k = 1:n
 obj(k).SuperProp = arg(k);
 end
 ...
 end
end

The subclass constructor calls the superclass constructor to pass the required argument
array, a:

method
 function obj = SubClass(a)
 obj = obj@SuperClass(a);
 for k = 1:numel(a)
 obj(k).SubProp = a(k);
 end
 end
end

 Heterogeneous Array Constructors

10-35

Sample Implementation
The following class hierarchy defines a subclass that builds object arrays in its
constructor. The root superclass of the hierarchy initializes the superclass part of the
objects in the array.

This class hierarchy represents members of an engineering team. The classes in the
hierarchy include:

• TeamMembers — Superclass for specific team member classes, like
ProjectEngineer. TeamMembers defines the Name and PhoneX properties and
derives from matlab.mixin.Heterogeneous.

• ProjectEngineer — Team members that are engineers. Each instance inherits a
Name and PhoneX property and defines a billing Rate property.

• Other members — Other types of team members not implemented for this example for
simplicity.

10 Object Arrays

10-36

The TeamMembers class is the root of the heterogeneous hierarchy and is a concrete
class. Before assigning values to the Name and PhoneX properties, the constructor
initializes an array of subclass (ProjectEngineer) objects.

The ProjectEngineer constructor provides the obj argument for the call to repelem
with this statement:

obj = obj@TeamMembers(varargin{1:2});

Here is the TeamMembers class:

classdef TeamMembers < matlab.mixin.Heterogeneous
 properties
 Name
 PhoneX
 end
 methods
 function obj = TeamMembers(nme,ext)
 if nargin > 0
 n = numel(nme);
 obj = repelem(obj,1,n);
 for k = 1:n
 obj(k).Name = nme{k};
 obj(k).PhoneX = ext(k);
 end
 else
 obj.Name = '';
 end
 end
 end
end

The ProjectEngineer class represents one type of team member. This class supports
array inputs and returns an array of objects.

classdef ProjectEngineer < TeamMembers
 % Inputs: {Name}, [PhoneX], {Rate}
 properties
 Rate
 end
 methods
 function obj = ProjectEngineer(varargin)
 obj = obj@TeamMembers(varargin{1:2});
 for k = 1:numel(varargin{1})
 obj(k).Rate = varargin{3}{k};

 Heterogeneous Array Constructors

10-37

 end
 end
 end
end

The ProjectEngineer class requires a cell array of names, a numeric array of phone
extensions, and a cell array of billing rates for each engineer in the team.

nm = {'Fred','Nancy','Claudette'};
px = [8112,8113,8114];
rt = {'C2','B1','A2'};
tm = ProjectEngineer(nm,px,rt)

tm =

 1x3 ProjectEngineer array with properties:

 Rate
 Name
 PhoneX

Potential Error
The TeamMembers constructor initializes the object array with this statement:

obj = repelem(obj,1,n);

Because the obj argument to repelem is a ProjectEngineer object, the array
returned is of the same class.

Without this statement, the TeamMembers constructor would create default objects to fill
in array elements in the for loop. The resulting heterogeneous array would be of the
class of the common superclass (TeamMembers in this case). If the superclass returns this
heterogeneous array to the subclass constructor, it is a violation of the rule that class
constructors must preserve the class of the returned object.

MATLAB issues this error:
When constructing an instance of class 'ProjectEngineer', the constructor must
preserve the class of the returned object.

Error in ProjectEngineer (line 8)
 obj = obj@TeamMembers(varargin{1:2});

10 Object Arrays

10-38

See Also

More About
• “Designing Heterogeneous Class Hierarchies” on page 10-24

 See Also

10-39

Events — Sending and Responding
to Messages

• “Overview Events and Listeners” on page 11-2
• “Define Custom Event Data” on page 11-6
• “Observe Changes to Property Values” on page 11-9
• “Implement Property Set Listener” on page 11-11
• “Event and Listener Concepts” on page 11-14
• “Event Attributes” on page 11-19
• “Events and Listeners Syntax” on page 11-22
• “Listener Lifecycle” on page 11-28
• “Listener Callback Syntax” on page 11-30
• “Callback Execution” on page 11-34
• “Determine If Event Has Listeners” on page 11-37
• “Listen for Changes to Property Values” on page 11-40
• “Assignment When Property Value Is Unchanged” on page 11-44
• “Techniques for Using Events and Listeners” on page 11-50

11

Overview Events and Listeners
In this section...
“Why Use Events and Listeners” on page 11-2
“Events and Listeners Basics” on page 11-2
“Event Syntax” on page 11-3
“Create Listener” on page 11-4

Why Use Events and Listeners
Events are notices that objects broadcast in response to something that happens, such as
a property value changing or a user interaction with an application program. Listeners
execute functions when notified that the event of interest occurs. Use events to
communicate changes to objects. Listeners respond by executing the callback function.

For more information, see “Event and Listener Concepts” on page 11-14.

Events and Listeners Basics
When using events and listeners:

• Only handle classes can define events and listeners.
• Define event names in the events block of a class definition (“Events and Listeners

Syntax” on page 11-22).
• Use event attributes to specify access to the event (“Event Attributes” on page 11-

19).
• Call the handle handle.notify method to trigger the event. The event notification

broadcasts the named event to all listeners registered for this event.
• Use the handle handle.addlistener method to couple a listener to the event source

object. MATLAB destroys the listener when the source of the event is destroyed.
• Use the handle handle.listener method to create listeners that are not coupled to

the lifecycle of the event source object. This approach is useful when the event source
and the listeners are defined in different components that you want to be able to add,
remove, or modify independently. Your application code controls the listener object
lifecycle.

11 Events — Sending and Responding to Messages

11-2

• Listener callback functions must define at least two input arguments — the event
source object handle and the event data (See “Listener Callback Syntax” on page 11-
30 for more information).

• Modify the data passed to each listener callback by subclassing the
event.EventData class.

Predefined Events

MATLAB Defines events for listening to property sets and queries. For more information,
see “Listen for Changes to Property Values” on page 11-40.

All handle objects define an event named ObjectBeingDestroyed. MATLAB triggers
this event before calling the class destructor.

Event Syntax
Define an event name in the events code block:

classdef ClassName < handle
 ...
 events
 EventName
 end
 ...
end

For example, MyClass defines an event named StateChange:

classdef MyClass < handle
 events
 StateChange
 end
end

Trigger an event using the handle class notify method:

classdef ClassName < handle
 ...
 events
 EventName
 end
 ...
 methods

 Overview Events and Listeners

11-3

 function anyMethod(obj)
 ...
 notify(obj,'EventName');
 end
 end
end

Any function or method can trigger the event for a specific instance of the class defining
the event. For example, the triggerEvent method calls notify to trigger the
StateChange event:

classdef MyClass < handle
 events
 StateChange
 end
 methods
 function triggerEvent(obj)
 notify(obj,'StateChange')
 end
 end
end

Trigger the StateChange event with the triggerEvent method:

obj = MyClass;
obj.triggerEvent

For more information, see “Events and Listeners Syntax” on page 11-22.

Create Listener
Define a listener using the handle class handle.addlisteneror handle.listener
method. Pass a function handle for the listener callback function using one of these
syntaxes:

• addlistener(SourceOfEvent,'EventName',@functionName) — for an ordinary
function.

• addlistener(SourceOfEvent,'EventName',@Obj.methodName) — for a method
of Obj.

• addlistener(SourceOfEvent,'EventName',@ClassName.methodName) — for a
static method of the class ClassName.

ListenerObject = addlistener(SourceOfEvent,'EventName',@listenerCallback);

11 Events — Sending and Responding to Messages

11-4

addlistener returns the listener object. The input arguments are:

• SourceOfEvent — An object of the class that defines the event. The event is
triggered on this object.

• EventName — The name of the event defined in the class events code block.
• @listenerCallback — a function handle referencing the function that executes in

response to the event.

For example, create a listener object for the StateChange event:

function lh = createListener(src)
 lh = addlistener(src,'StateChange',@handleStateChange)
end

Define the callback function for the listener. The callback function must accept as the first
two arguments the event source object and an event data object: Use the event source
argument to access the object that triggered the event. Find information about the event
using the event data object.

function handleStateChange(src,eventData)
 % src - handle to object that triggered the event
 % eventData - event.EventData object containing
 % information about the event.
 ...
end

For more information, see “Listener Callback Syntax” on page 11-30.

See Also
event.EventData | handle

Related Examples
• “Listener Lifecycle” on page 11-28
• “Implement Property Set Listener” on page 11-11

 See Also

11-5

Define Custom Event Data

In this section...
“Class Event Data Requirements” on page 11-6
“Define and Trigger Event” on page 11-6
“Define Event Data” on page 11-7
“Create Listener for Overflow Event” on page 11-8

Class Event Data Requirements
Suppose that you want to create a listener callback function that has access to specific
information when the event occurs. This example shows how by creating custom event
data.

Events provide information to listener callback functions by passing an event data
argument to the specified function. By default, MATLAB passes an event.EventData
object to the listener callback. This object has two properties:

• EventName — Name of the event triggered by this object.
• Source — Handle of the object triggering the event.

Provide additional information to the listener callback by subclassing the
event.EventData class.

• Define properties in the subclass to contain the additional data.
• Define a constructor that accepts the additional data as arguments.
• Set the ConstructOnLoad class attribute.
• Use the subclass constructor as an argument to the notify method to trigger the

event.

Define and Trigger Event
The SimpleEventClass defines a property set method (see “Property Set Methods” on
page 8-58) from which it triggers an event if the property is set to a value exceeding a
certain limit. The property set method performs these operations:

11 Events — Sending and Responding to Messages

11-6

• Saves the original property value
• Sets the property to the specified value
• If the specified value is greater than 10, the set method triggers an Overflow event
• Passes the original property value, and other event data, in a

SpecialEventDataClass object to the notify method.

classdef SimpleEventClass < handle
 properties
 Prop1 = 0
 end
 events
 Overflow
 end
 methods
 function set.Prop1(obj,value)
 orgvalue = obj.Prop1;
 obj.Prop1 = value;
 if (obj.Prop1 > 10)
 % Trigger the event using custom event data
 notify(obj,'Overflow',SpecialEventDataClass(orgvalue));
 end
 end
 end
end

Define Event Data
Event data is always contained in an event.EventData object. The
SpecialEventDataClass adds the original property value to the event data by
subclassing event.EventData:

classdef (ConstructOnLoad) SpecialEventDataClass < event.EventData
 properties
 OrgValue = 0
 end
 methods
 function eventData = SpecialEventDataClass(value)
 eventData.OrgValue = value;
 end
 end
end

 Define Custom Event Data

11-7

Create Listener for Overflow Event
To listen for the Overflow event, attach a listener to an instance of the
SimpleEventClass class. Use the addlistener method to create the listener. Also, you
must define a callback function for the listener to execute when the event is triggered.

The function setupSEC instantiates the SimpleEventClass class and adds a listener to
the object. In this example, the listener callback function displays information that is
contained in the eventData argument (which is a SpecialEventDataClass object).

function sec = setupSEC
 sec = SimpleEventClass;
 addlistener(sec,'Overflow',@overflowHandler)
 function overflowHandler(eventSrc,eventData)
 disp('The value of Prop1 is overflowing!')
 disp(['Its value was: ' num2str(eventData.OrgValue)])
 disp(['Its current value is: ' num2str(eventSrc.Prop1)])
 end
end

Create the SimpleEventClass object and add the listener:

sec = setupSEC;
sec.Prop1 = 5;
sec.Prop1 = 15; % listener triggers callback

The value of Prop1 is overflowing!
Its value was: 5
Its current value is: 15

See Also

Related Examples
• “Observe Changes to Property Values” on page 11-9

11 Events — Sending and Responding to Messages

11-8

Observe Changes to Property Values
This example shows how to listen for changes to a property value. This example uses:

• PostSet event predefined by MATLAB
• SetObservable property attribute to enable triggering the property PostSet event.
• addlistener handle class method to create the listener

classdef PropLis < handle
 % Define a property that is SetObservable
 properties (SetObservable)
 ObservedProp = 1
 end
 methods
 function attachListener(obj)
 %Attach a listener to a PropListener object
 addlistener(obj,'ObservedProp','PostSet',@PropLis.propChange);
 end
 end
 methods (Static)
 function propChange(metaProp,eventData)
 % Callback for PostSet event
 % Inputs: meta.property object, event.PropertyEvent
 h = eventData.AffectedObject;
 propName = metaProp.Name;
 disp(['The ',propName,' property has changed.'])
 disp(['The new value is: ',num2str(h.ObservedProp)])
 disp(['Its default value is: ',num2str(metaProp.DefaultValue)])
 end
 end
end

The PropLis class uses an ordinary method (attachListener) to add the listener for
the ObservedProp property. If the PropLis class defines a constructor, the constructor
can contain the call to addlistener.

The listener callback is a static method (propChange). MATLAB passes two arguments
when calling this function:

• metaProp — a meta.property object for ObservedProp
• eventData — an event.PropertyEvent object contain event-specific data.

These arguments provide information about the property and the event.

 Observe Changes to Property Values

11-9

Use the PropLis class by creating an instance and calling its attachListener method:

plObj = PropLis;
plObj.ObservedProp

ans =

 1

plObj.attachListener
plObj.ObservedProp = 2;

The ObservedProp property has changed.
The new value is: 2
Its default value is: 1

See Also
event.proplistener | handle.addlistener | handle.listener

Related Examples
• “Listener Lifecycle” on page 11-28
• “Implement Property Set Listener” on page 11-11

11 Events — Sending and Responding to Messages

11-10

Implement Property Set Listener
This example shows how to define a listener for a property set event. The listener callback
triggers when the value of a specific property changes. The class defined for this example
uses a method for a push-button callback and a static method for the listener callback.
When the push-button callback changes the value of a property, the listener executes its
callback on the PreSet event.

This example defines a class (PushButton) with these design elements:

• ResultNumber – Observable property
• uicontrol pushbutton – Push-button object used to generate a new graph when its

callback executes
• A listener that responds to a change in the observable property

PushButton Class Design
The PushButton class creates figure, uicontrol, axes graphics objects, and a
listener object in the class constructor.

The push button's callback is a class method (named pressed). When the push button is
activated, the following sequence occurs:

1 MATLAB executes the pressed method, which graphs a new set of data and
increments the ResultNumber property.

2 Attempting to set the value of the ResultNumber property triggers the PreSet
event, which executes the listener callback before setting the property value.

3 The listener callback uses the event data to obtain the handle of the callback object
(an instance of the PushButton class), which then provides the handle of the axes
object that is stored in its AxHandle property.

4 The listener callback updates the axes Title property, after the callback completes
execution, MATLAB sets the ResultsNumber property to its new value.

classdef PushButton < handle
 properties (SetObservable)
 ResultNumber = 1
 end
 properties
 AxHandle

 Implement Property Set Listener

11-11

 end
 methods
 function buttonObj = PushButton
 myFig = figure;
 buttonObj.AxHandle = axes('Parent',myFig);
 uicontrol('Parent',myFig,...
 'Style','pushbutton',...
 'String','Plot Data',...
 'Callback',@(src,evnt)pressed(buttonObj));
 addlistener(buttonObj,'ResultNumber','PreSet',...
 @PushButton.updateTitle);
 end
 end
 methods
 function pressed(obj)
 scatter(obj.AxHandle,randn(1,20),randn(1,20),'p')
 obj.ResultNumber = obj.ResultNumber + 1;
 end
 end
 methods (Static)
 function updateTitle(~,eventData)
 h = eventData.AffectedObject;
 set(get(h.AxHandle,'Title'),'String',['Result Number: ',...
 num2str(h.ResultNumber)])
 end
 end
end

The scatter graph looks similar to this graph after three push-button clicks.

buttonObj = PushButton;

11 Events — Sending and Responding to Messages

11-12

See Also

Related Examples
• “Listen for Changes to Property Values” on page 11-40

 See Also

11-13

Event and Listener Concepts
In this section...
“The Event Model” on page 11-14
“Limitations” on page 11-15
“Default Event Data” on page 11-16
“Events Only in Handle Classes” on page 11-16
“Property-Set and Query Events” on page 11-17
“Listeners” on page 11-17

The Event Model
Events represent changes or actions that occur within objects. For example,

• Modification of class data
• Execution of a method
• Querying or setting a property value
• Destruction of an object

Basically, any activity that you can detect programmatically can generate an event and
communicate information to other objects.

MATLAB classes define a process that communicates the occurrence of events to other
objects that respond to the events. The event model works this way:

• A handle class declares a name used to represent an event. “Name Events” on page
11-22

• After creating an object of the event-declaring class, attach listener to that object.
“Control Listener Lifecycle” on page 11-28

• A call to the handle class notify method broadcasts a notice of the event to listeners.
The class user determines when to trigger the event. “Trigger Events” on page 11-23

• Listeners execute a callback function when notified that the event has occurred.
“Specifying Listener Callbacks” on page 11-30

• You can bind listeners to the lifecycle of the object that defines the event, or limit
listeners to the existence and scope of the listener object. “Control Listener Lifecycle”
on page 11-28

11 Events — Sending and Responding to Messages

11-14

The following diagram illustrates the event model.

Listener1

Properties

EventName = ‘InsufficientFunds’

FunctionHandle = @Callback1

Listener2

Properties

EventName = ‘InsufficientFunds’

FunctionHandle = @Callback2

2. The notify method

 triggers an event, and a

 message is broadcast.

3. Listeners awaiting message

 execute their callbacks.

 (The broadcasting object

 does not necessarily know

 who is listening.)

1. The withdraw method is called.
BankAccount

Properties

AccountNumber

AccountBalance

Methods

Events

InsufficientFunds

InsufficientFunds
InsufficientFunds

if AccountBalance <= 0

 notify(obj,’InsufficientFunds’);

end

deposit

withdraw

Limitations
There are certain limitations to the use of events:

• The event source cannot guarantee that listeners exist when triggering the event.
• A listener cannot prevent other listeners from being notified that the event occurred.

 Event and Listener Concepts

11-15

• The order in which listeners execute is not defined.
• Listeners should not modify the event data object passed to the listener callback,

because other listeners are passed this same handle object.

Default Event Data
Events provide information to listener callbacks by passing an event data argument to the
callback function. By default, MATLAB passes an event.EventData object to the
listener callback. This object has two properties:

• EventName — The event name as defined in the class event block
• Source — The object that is the source of the event

MATLAB passes the source object to the listener callback in the required event data
argument. Use the source object to access any of the object's public properties from
within your listener callback function.

Customize Event Data

You can create a subclass of the event.EventData class to provide additional
information to listener callback functions. The subclass would define properties to contain
the additional data and provide a method to construct the derived event data object so it
can be passed to the notify method.

“Define Event-Specific Data” on page 11-26 provides an example showing how to
customize this data.

Events Only in Handle Classes
You can define events only in handle classes. This restriction exists because a value class
is visible only in a single MATLAB workspace so no callback or listener can have access to
the object that triggered the event. The callback could have access to a copy of the object.
However, accessing a copy is not useful because the callback cannot access the current
state of the object that triggered the event or effect any changes in that object.

“Comparison of Handle and Value Classes” on page 7-2 provides general information on
handle classes.

“Events and Listeners Syntax” on page 11-22 shows the syntax for defining a handle
class and events.

11 Events — Sending and Responding to Messages

11-16

Property-Set and Query Events
There are four predefined events related to properties:

• PreSet — Triggered just before the property value is set, before calling its set access
method

• PostSet — Triggered just after the property value is set
• PreGet — Triggered just before a property value query is serviced, before calling its

get access method
• PostGet — Triggered just after returning the property value to the query

These events are predefined and do not need to be listed in the class events block.

When a property event occurs, the callback is passed an event.PropertyEvent object.
This object has three properties:

• EventName — The name of the event described by this data object
• Source — The source object whose class defines the event described by the data

object
• AffectedObject — The object whose property is the source for this event (that is,

AffectedObject contains the object whose property was either accessed or
modified).

You can define your own property-change event data by subclassing the
event.EventData class. The event.PropertyEvent class is a sealed subclass of
event.EventData.

See “Listen for Changes to Property Values” on page 11-40 for a description of the
process for creating property listeners.

See “The PostSet Event Listener” on page 11-60 for an example.

See “Property Access Methods” on page 8-52 for information on methods that control
access to property values.

Listeners
Listeners encapsulate the response to an event. Listener objects belong to the
event.listener class, which is a handle class that defines the following properties:

 Event and Listener Concepts

11-17

• Source — Handle or array of handles of the object that generated the event
• EventName — Name of the event
• Callback — Function to execute when an enabled listener receives event notification
• Enabled — Callback function executes only when Enabled is true. See “Enable and

Disable Listeners” on page 11-63 for an example.
• Recursive — Allow listener to trigger the same event that caused execution of the

callback.

Recursive is false by default. If the callback triggers the event for which it is
defined as the callback, the listener cannot execute recursively. Therefore, set
Recursive to false if the callback must trigger its own event. Setting the
Recursive property to true can create a situation where infinite recursion reaches
the recursion limit and triggers an error.

“Control Listener Lifecycle” on page 11-28 provides more specific information.

11 Events — Sending and Responding to Messages

11-18

Event Attributes

Specify Event Attributes
The following table lists the attributes you can set for events. To specify a value for an
attribute, assign the attribute value on the same line as the event keyword. For example,
all the events defined in the following events block have protected ListenAccess and
private NotifyAccess.

events (ListenAccess = protected, NotifyAccess = private)
 EventName1
 EventName2
end

To define other events in the same class definition that have different attribute settings,
create another events block.

 Event Attributes

11-19

Event Attributes

Attribute
Name

Class Description

Hidden logical Default =
false

If true, event does not appear in list of events returned by
events function (or other event listing functions or
viewers).

ListenAcces
s

• enumeration,
default = public

• meta.class object
• cell array of

meta.class
objects

Determines where you can create listeners for the event.

• public — Unrestricted access
• protected — Access from methods in class or

subclasses
• private — Access by class methods only (not from

subclasses)
• List classes that have listen access to this event. Specify

classes as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell

array, {}, is the same as private access.

See “Class Members Access” on page 12-28
NotifyAcces
s

• enumeration,
default = public

• meta.class object
• cell array of

meta.class
objects

Determines where code can trigger the event

• public — Any code can trigger event
• protected — Can trigger event from methods in class

or derived classes
• private — Can trigger event by class methods only

(not from derived classes)
• List classes that have notify access to this event.

Specify classes as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell

array, {}, is the same as private access.

See “Class Members Access” on page 12-28

11 Events — Sending and Responding to Messages

11-20

Attribute
Name

Class Description

Framework
attributes

Classes that use certain framework base classes have framework-specific
attributes. See the documentation for the specific base class you are using for
information on these attributes.

See Also

Related Examples
• “Events and Listeners Syntax” on page 11-22

 See Also

11-21

Events and Listeners Syntax

In this section...
“Components to Implement” on page 11-22
“Name Events” on page 11-22
“Trigger Events” on page 11-23
“Listen to Events” on page 11-23
“Define Event-Specific Data” on page 11-26

Components to Implement
Implementation of events and listeners involves these components:

• Specification of the name of an event in a handle class — “Name Events” on page 11-
22.

• A function or method to trigger the event when the action occurs — “Trigger Events”
on page 11-23.

• Listener objects to execute callback functions in response to the triggered event —
“Listen to Events” on page 11-23.

• Default or custom event data that the event passes to the callback functions — “Define
Event-Specific Data” on page 11-26.

Name Events
Define an event by declaring an event name inside an events block. For example, this
class creates an event called ToggledState:

classdef ToggleButton < handle
 properties
 State = false
 end
 events
 ToggledState
 end
end

11 Events — Sending and Responding to Messages

11-22

Trigger Events
The OnStateChange method calls notify to trigger the ToggledState event. Pass the
handle of the object that is the source of the event and the name of the event to notify.

classdef ToggleButton < handle
 properties
 State = false
 end
 events
 ToggledState
 end
 methods
 function OnStateChange(obj,newState)
 if newState ~= obj.State
 obj.State = newState;
 notify(obj,'ToggledState');
 end
 end
 end
end

Listen to Events
After the call to notify triggers an event, MATLAB broadcasts a message to all listeners
that are defined for that event and source object. There are two ways to create listeners:
using the handle class handle.addlistener or handle.listener method.

Use addlistener for Persistent Listeners

If you want the listener to persist beyond the normal variable scope, use addlistener to
create it. The event source object holds a reference to the listener object. When the event
source object is destroyed, MATLAB destroys the listener.

This code defines a listener for the ToggleState event:

lh = addlistener(obj,'ToggleState',@RespondToToggle.handleEvnt);

addlistener has these arguments:

• obj — The object that is the source of the event
• ToggleState — The event name passed as a char vector

 Events and Listeners Syntax

11-23

• @RespondToToggle.handleEvnt — A function handle to the callback function (see
the following definition “Define Listener” on page 11-24).

Use handle.listener to Decouple Listener and Source

Use the handle.listener method to create listeners when you want to manage the
lifecycle of the listener and do not want a coupling between the event source and listener
object. MATLAB does not destroy listeners created with handle.listener when the
event source is destroyed. However, your code must keep the listener object handle in
scope when creating listeners using handle.listener.

The handle.listener method requires the same arguments as handle.addlistener:
the event-naming object, the event name, and a function handle to the callback.
handle.listener returns the handle to the listener object.

lh = listener(obj,'EventName',@callbackFunction)

For example, this code uses the ToggleState event discussed previously:

lh = listener(obj,'ToggleState',@RespondToToggle.handleEvnt)

Callback Function

The listener callback function must accept a minimum of two arguments, which MATLAB
automatically passes to the callback. Here are the required arguments:

• The source of the event — that is, obj in the call to addlistener or
event.listener.

• An event.EventData object or a subclass of event.EventData, such as the
ToggleEventData object described in, “Define Event-Specific Data” on page 11-26.

Define the callback function to accept the source object and event data arguments.

function callbackFunction(src,evtdata)
 ...
end

For more information on callback syntax, see “Listener Callback Syntax” on page 11-30.

Define Listener

The RespondToToggle class defines objects that listen for the ToggleState event
defined in the ToggleButton class.

11 Events — Sending and Responding to Messages

11-24

classdef RespondToToggle < handle
 methods
 function obj = RespondToToggle(toggle_button_obj)
 addlistener(toggle_button_obj,'ToggledState',@RespondToToggle.handleEvnt);
 end
 end
 methods (Static)
 function handleEvnt(src,~)
 if src.State
 disp('ToggledState is true')
 else
 disp('ToggledState is false')
 end
 end
 end
end

The class RespondToToggle adds the listener in its constructor. In this case, the class
defines the callback (handleEvnt) as a static method that accepts the two required
arguments:

• src — The handle of the object triggering the event (that is, a ToggleButton object)
• evtdata — An event.EventData object

For example, this code creates objects of both classes:

tb = ToggleButton;
rtt = RespondToToggle(tb);

Whenever you call the OnStateChange method of the ToggleButton object, notify
triggers the event. For this example, the callback displays the value of the State
property:

tb.OnStateChange(true)

ToggledState is true

tb.OnStateChange(false)

ToggledState is false

Remove Listeners

Remove a listener object by calling delete on its handle. For example, if the class
RespondToToggle saved the listener handle as a property, you could delete the listener.
classdef RespondToToggle < handle
 properties

 Events and Listeners Syntax

11-25

 ListenerHandle % Property for listener handle
 end
 methods
 function obj = RespondToToggle(toggle_button_obj)
 hl = addlistener(toggle_button_obj,'ToggledState',@RespondToToggle.handleEvnt);
 obj.ListenerHandle = hl; % Save listener handle
 end
 end
 methods (Static)
 function handleEvnt(src,~)
 if src.State
 disp('ToggledState is true')
 else
 disp('ToggledState is false')
 end
 end
 end
end

With this code change, you can remove the listener from an instance of the
RespondToToggle class. For example:

tb = ToggleButton;
rtt = RespondToToggle(tb);

The object rtt is listening for the ToggleState event triggered by object tb. To remove
the listener, call delete on the property containing the listener handle.

delete(rtt.ListenerHandle)

To deactivate a listener temporarily, see “Temporarily Deactivate Listeners” on page 11-
28.

Define Event-Specific Data
Suppose that you want to pass the state of the toggle button as a result of the event to the
listener callback. You can add more data to the default event data by subclassing the
event.EventData class and adding a property to contain this information. Then you can
pass this object to the handle.notify method.

Note To save and load objects that are subclasses of event.EventData, such as
ToggleEventData, enable the ConstructOnLoad class attribute for the subclass.

classdef (ConstructOnLoad) ToggleEventData < event.EventData
 properties

11 Events — Sending and Responding to Messages

11-26

 NewState
 end

 methods
 function data = ToggleEventData(newState)
 data.NewState = newState;
 end
 end
end

The call to notify can use the ToggleEventData constructor to create the necessary
argument.

evtdata = ToggleEventData(newState);
notify(obj,'ToggledState',evtdata);

See Also

Related Examples
• “Listener Callback Syntax” on page 11-30
• “Listen for Changes to Property Values” on page 11-40
• “Techniques for Using Events and Listeners” on page 11-50

 See Also

11-27

Listener Lifecycle
In this section...
“Control Listener Lifecycle” on page 11-28
“Temporarily Deactivate Listeners” on page 11-28
“Permanently Delete Listeners” on page 11-28

Control Listener Lifecycle
There are two ways to create listeners:

• handle.addlistener creates a coupling between the listener and event source
object. The listener object persists until you delete it or until the event object is
destroyed. When the event source object is destroyed, MATLAB automatically destroys
the listener object.

• handle.listener constructs listener objects that are not coupled to the lifecycle of
the event source object. The listener is active as long as the listener object remains in
scope and is not explicitly deleted. Therefore, your application must maintain a
reference to the listener object by storing the listener handle. The advantage of
uncoupling the listener and event objects is that you can define and destroy each
independently.

For more information, see “Events and Listeners Syntax” on page 11-22.

Temporarily Deactivate Listeners
The addlistener method returns the listener object so that you can set its properties.
For example, you can temporarily disable a listener by setting its Enabled property to
false:

ListenerHandle.Enabled = false;

To reenable the listener, set Enabled to true.

ListenerHandle.Enabled = true;

Permanently Delete Listeners
Calling delete on a listener object destroys it and permanently removes the listener:

11 Events — Sending and Responding to Messages

11-28

delete(ListenerHandle)

Note Do not use the pack command with objects that define events and listeners. The
pack command causes the destruction of any listeners defined for the objects in the
workspace. For information on restoring listeners when saving objects, see “Restore
Listeners” on page 13-36.

See Also

Related Examples
• “Enable and Disable Listeners” on page 11-63

 See Also

11-29

Listener Callback Syntax
In this section...
“Specifying Listener Callbacks” on page 11-30
“Input Arguments for Callback Function” on page 11-30
“Additional Arguments for Callback Function” on page 11-31

Specifying Listener Callbacks
Callbacks are functions that execute when the listener receives notification of the event.
Pass a function handle referencing the callback function to handle.addlistener or
handle.listener when creating the listener.

All callback functions must accept at least two arguments:

• The handle of the object that is the source of the event
• An event.EventData object or an object that is derived from the event.EventData

class.

Syntax to Reference Callback

For a function: functionName
lh = addlistener(eventSourceObj,'EventName',@functionName)

For an ordinary method called with an object of the class: obj.methodName
lh = addlistener(eventSourceObj,'EventName',@obj.methodName)

For a static method:ClassName.methodName
lh = addlistener(eventSourceObj,'EventName',@ClassName.methodName)

For a function in a package:PackageName.functionName
lh = addlistener(eventSourceObj,'EventName',@PackageName.functionName)

Input Arguments for Callback Function
Define the callback function to accept the required arguments:

11 Events — Sending and Responding to Messages

11-30

function callbackFunction(src,evnt)
 ...
end

If you do not use the event source and event data arguments, you can define the function
to ignore these inputs:

function callbackFunction(~,~)
 ...
end

For a method:

function callbackMethod(obj,src,evnt)
 ...
end

Additional Arguments for Callback Function
To pass arguments to your callback in addition to the source and event data arguments
passed by MATLAB, use an anonymous function. Anonymous functions can use any
variables that are available in the current workspace.

Syntax Using Anonymous Function

Here is the syntax for an ordinary method. The input arguments (arg1,...argn) must
be defined in the context in which you call addlistener.

lh = addlistener(src,'EventName',@(src,evnt)obj.callbackMethod(src,evnt,arg1,...argn)

Use varargin to define the callback function.

function callbackMethod(src,evnt,varargin)
 arg1 = varargin{1};
 ...
 argn = varargin{n};
 ...
end

For general information on anonymous function, see “Anonymous Functions”.

 Listener Callback Syntax

11-31

Using Methods for Callbacks

The TestAnonyFcn class shows the use of an anonymous function with an additional
argument. The listener callback displays the inputs arguments to show how MATLAB calls
the callback method.

classdef TestAnonyFcn < handle
 events
 Update
 end
 methods
 function obj = TestAnonyFcn
 t = datestr(now);
 addlistener(obj,'Update',@(src,evnt)obj.evntCb(src,evnt,t));
 end
 function triggerEvnt(obj)
 notify(obj,'Update')
 end
 end
 methods (Access = private)
 function evntCb(~,~,evnt,varargin)
 disp(['Number of inputs: ',num2str(nargin)])
 disp(evnt.EventName)
 disp(varargin{:})
 end
 end
end

Create an object and trigger the event by calling the triggerEvt method:

obj = TestAnonyFcn;
obj.triggerEvnt;

Number of inputs: 4
Update
01-Jul-2008 17:19:36

See Also

Related Examples
• “Callback Execution” on page 11-34

11 Events — Sending and Responding to Messages

11-32

• “Create Function Handle”

 See Also

11-33

Callback Execution
In this section...
“When Callbacks Execute” on page 11-34
“Listener Order of Execution” on page 11-34
“Callbacks That Call notify” on page 11-34
“Manage Callback Errors” on page 11-35
“Invoke Functions from Function Handles” on page 11-35

When Callbacks Execute
Listeners execute their callback function when notified that the event has occurred.
Listeners are passive observers in the sense that errors in the execution of a listener
callback do not prevent the execution of other listeners responding to the same event, or
execution of the function that triggered the event.

Callback function execution continues until the function completes. If an error occurs in a
callback function, execution stops and control returns to the calling function. Then any
remaining listener callback functions execute.

Listener Order of Execution
The order in which listeners callback functions execute after the firing of an event is
undefined. However, all listener callbacks execute synchronously with the event firing.

The handle class handle.notify method calls all listeners before returning execution to
the function that called notify.

Callbacks That Call notify
Do not modify and reuse or copy and reuse the event data object that you pass to notify,
which is then passed to the listener callback.

Listener callbacks can call notify to trigger events, including the same event that
invoked the callback. When a function calls notify, MATLAB sets the property values of
the event data object that is passed to callback functions. To ensure that these properties

11 Events — Sending and Responding to Messages

11-34

have appropriate values for subsequently called callbacks, always create a new event data
object if you call notify with custom event data.

Manage Callback Errors
If you want to control how your program responds to errors, use a try/catch statement
in your listener callback function to handle errors.

Invoke Functions from Function Handles
When you create a function handle inside a class method, the context of the method
determines the context in which the function executes. This context gives the function
access to private and protected methods that are accessible to that class.

For example, the UpdateEvt class defines an event named Update and a listener for that
event. The listener callback is the private method evtCb.

classdef UpdateEvt < handle
 events
 Update
 end
 methods
 function obj = UpdateEvt
 addlistener(obj,'Update',@evtCb);
 end
 end
 methods (Access = private)
 function obj = evtCb(obj,varargin)
 disp('Updated Event Triggered')
 end
 end
end

Private methods are normally accessible only by class methods. However, because the
function handle is created in a class method, notify can execute the callback from
outside of the class:

a = UpdateEvt;
a.notify('Update')

Updated Event Triggered

 Callback Execution

11-35

See Also

Related Examples
• “Listener Callback Syntax” on page 11-30

11 Events — Sending and Responding to Messages

11-36

Determine If Event Has Listeners
In this section...
“Do Listeners Exist for This Event?” on page 11-37
“Why Test for Listeners” on page 11-37
“Coding Patterns” on page 11-37
“Listeners in Heterogeneous Arrays” on page 11-38

Do Listeners Exist for This Event?
Use the event.hasListener function to determine if a specific event has listeners.
event.hasListener accepts an array of event source objects and an event name as
input arguments. It returns an array of logical values indicating if listeners exist for the
specified event on each object in the array.

Note When called, event.hasListener must have NotifyAccess for the event. That
is, call event.hasListener in a context in which you can call notify for the event in
question.

Why Test for Listeners
Use event.hasListener to avoid sending event notifications when there are no
listeners for the event. For example, if creating custom event data consumes significant
resources, or if events are triggered repeatedly, use event.hasListener to test for
listeners before performing these steps.

Coding Patterns
• Conditionalize the creation of event data and the call to notify using

event.hasListener. For an object array a, determine if there are listeners before
creating event data and triggering the event:

if any(event.hasListener(a,'NameOfEvent'))
 evt = MyCustomEventData(...);
 notify(a,'NameOfEvent',evt)
end

 Determine If Event Has Listeners

11-37

• Trigger events selectively using logical indexing with the values returned by
event.hasListener. Send event notifications only for array elements that have
listeners:

ind = event.hasListeners(a,'NameOfEvent');
notify(a(ind),'NameOfEvent',evt)

Listeners in Heterogeneous Arrays
If the input object array is heterogeneous, the class of the array must define the specified
event. You can query the listeners only for events that all objects in the array define.

For example, in the following diagram, the class of a heterogeneous array formed with
objects of classes SpecificA, SpecificB, and SpecificC is RootSuperclass.
Therefore, event.hasListener can find listeners only for the RootEvent event,
because it is the only event common to all array elements.

Create a heterogeneous array with the three most specific classes:

11 Events — Sending and Responding to Messages

11-38

het = [SpecificA,SpecificB,SpecificC];
class(het)

ans

RootSuperclass

events(het)

Events for class RootSuperclass

 RootEvent

event.hasListener cannot determine if there are listeners for events that are defined
by some but not all objects in the array:

event.hasListener(het,'ClassAEvent')

Error using event.hasListener
Event 'ClassAEvent' is not defined for class 'RootSuperclass'.

Determine if individual objects in the heterogeneous array have listeners defined for their
specific events, by indexing into the array:

event.hasListener(het(1),'ClassAEvent')

For more information about determining the class of heterogeneous arrays, see
“Designing Heterogeneous Class Hierarchies” on page 10-24.

See Also

Related Examples
• “Listener Lifecycle” on page 11-28

 See Also

11-39

Listen for Changes to Property Values
In this section...
“Create Property Listeners” on page 11-40
“Property Event and Listener Classes” on page 11-42

Create Property Listeners
For handle classes, you can define listeners for the predeclared property events (named:
PreSet, PostSet, PreGet, and PostGet). To create listeners for those named events:

• Specify the SetObservable and/or GetObservable property attributes.
• Define callback functions
• Create the property listener by including the name of the property and the event in

the call to handle.addlisteneror handle.listener.
• If necessary, subclass event.data to create a specialized event data object to pass to

the callback function.
• Prevent execution of the callback if the new value is the same as the current value

(see “Assignment When Property Value Is Unchanged” on page 11-44).

Set Property Attributes to Enable Property Events

In the properties block, enable the SetObservable attribute. You can define PreSet and
PostSet listeners for the properties defined in this block:

properties (SetObservable)
 PropOne
 PropTwo
 ...
end

Define Callback Function for Property Event

The listener executes the callback function when MATLAB triggers the property event.
Define the callback function to have two specific arguments, which are passed to the
function automatically when called by the listener:

• Event source — a meta.property object describing the object that is the source of
the property event

11 Events — Sending and Responding to Messages

11-40

• Event data — a event.PropertyEvent object containing information about the
event

You can pass additional arguments if necessary. It is often simple to define this method as
Static because these two arguments contain most necessary information in their
properties.

For example, suppose the handlePropEvents function is a static method of the class
creating listeners for two properties of an object of another class:
methods (Static)
 function handlePropEvents(src,evnt)
 switch src.Name
 case 'PropOne'
 % PropOne has triggered an event
 ...
 case 'PropTwo'
 % PropTwo has triggered an event
 ...
 end
 end
end

Another possibility is to use the event.PropertyEvent object's EventName property in
the switch statement to key off the event name (PreSet or PostSet in this case).

“Class Metadata” on page 17-2 provides more information about the meta.property
class.

Add Listener to Property

The handle.addlistenerhandle class method enables you to attach a listener to a
property without storing the listener object as a persistent variable. For a property event,
use the four-argument version of addlistener.

Here is a call to addlistener:
addlistener(EventObject,'PropOne','PostSet',@ClassName.handlePropertyEvents);

The arguments are:

• EventObject — handle of the object generating the event
• PropOne — name of the property to which you want to listen
• PostSet — name of the event for which you want to listen
• @ClassName.handlePropertyEvents — function handle referencing a static

method, which requires the use of the class name

 Listen for Changes to Property Values

11-41

If your listener callback is an ordinary method and not a static method, the syntax is:
addlistener(EventObject,'PropOne','PostSet',@obj.handlePropertyEvents);

where obj is the handle of the object defining the callback method.

If the listener callback is a function that is not a class method, you pass a function handle
to that function. Suppose that the callback function is a package function:
addlistener(EventObject,'PropOne','PostSet',@package.handlePropertyEvents);

For more information on passing functions as arguments, see “Create Function Handle”.

Property Event and Listener Classes
The following two classes show how to create PostSet property listeners for two
properties — PropOne and PropTwo.

Class Generating the Event

The PropEvent class enables property PreSet and PostSet event triggering by
specifying the SetObservable property attribute. These properties also enable the
AbortSet attribute, which prevents the triggering of the property events if the
properties are set to a value that is the same as their current value (see “Assignment
When Property Value Is Unchanged” on page 11-44).

classdef PropEvent < handle
 properties (SetObservable, AbortSet)
 PropOne
 PropTwo
 end
 methods
 function obj = PropEvent(p1,p2)
 if nargin > 0
 obj.PropOne = p1;
 obj.PropTwo = p2;
 end
 end
 end
end

Class Defining the Listeners

The PropListener class defines two listeners:

11 Events — Sending and Responding to Messages

11-42

• Property PropOne PostSet event
• Property PropTwo PostSet event

You can define listeners for other events or other properties using a similar approach. It is
not necessary to use the same callback function for each listener. See the
meta.property and event.PropertyEvent reference pages for more on the
information contained in the arguments passed to the listener callback function.
classdef PropListener < handle
 % Define property listeners
 methods
 function obj = PropListener(evtobj)
 if nargin > 0
 addlistener(evtobj,'PropOne','PostSet',@PropListener.handlePropEvents);
 addlistener(evtobj,'PropTwo','PostSet',@PropListener.handlePropEvents);
 end
 end
 end
 methods (Static)
 function handlePropEvents(src,evnt)
 switch src.Name
 case 'PropOne'
 sprintf('PropOne is %s\n',num2str(evnt.AffectedObject.PropOne))
 case 'PropTwo'
 sprintf('PropTwo is %s\n',num2str(evnt.AffectedObject.PropTwo))
 end
 end
 end
end

See Also

Related Examples
• “Assignment When Property Value Is Unchanged” on page 11-44

 See Also

11-43

Assignment When Property Value Is Unchanged
In this section...
“AbortSet When Value Does Not Change” on page 11-44
“How MATLAB Compares Values” on page 11-44
“When to Use AbortSet” on page 11-45
“Implement AbortSet” on page 11-45
“Using AbortSet with Property Validation” on page 11-47

AbortSet When Value Does Not Change
When you set a property value, MATLAB triggers the property PreSet and PostSet
events, invokes the property set method (if one is defined), and sets the property value.
These actions occur even when the current value of the property is the same as the new
value.

You can prevent these actions by setting the property's AbortSet attribute to true.
When AbortSet is enabled, MATLAB compares the current property value to the new
value being assigned to the property. If the new value is the same as the current value,
MATLAB does not:

• Set the property value.
• Trigger the PreSet and PostSet events.
• Call the property set method, if one exists.

To compare values, MATLAB must get the current value of the property. Getting the
current value causes the property get method (get.Property) to execute, if one exists.
Any errors that occur when calling the property get method are visible to the user, even if
MATLAB does not change the current value.

How MATLAB Compares Values
MATLAB uses the isequal function to determine if the current value of the property is
the same as the new value. To determine if specific values evaluate as equal when using
the AbortSet attribute, see the isequal function documentation or any isequal
method overloaded for the class of the property value.

11 Events — Sending and Responding to Messages

11-44

When to Use AbortSet
Use of the AbortSet attribute does incur some overhead in the comparison of the
current and new property values. Using the AbortSet attribute can slow all property
assignments because the current and assigned value are always compared before the
assignment is made. The AbortSet attribute is most useful when:

• You want to prevent notification of the PreSet and PostSet events and execution of
the listener callbacks when the property value does not change.

• The cost of setting a property value is greater than the cost of comparing the current
property value with the value being assigned, and you are willing to incur the
comparison cost with all assignments to the property.

Implement AbortSet
The following example shows how the AbortSet attribute works. The AbortTheSet
class defines a property, PropOne, that has listeners for the PreGet, PreSet, PostGet,
and PostSet events and enables the AbortSet attribute.

Note To use this class, save the AbortTheSet class in a file with the same name in a
folder on your MATLAB path.

classdef AbortTheSet < handle
 properties (SetObservable, GetObservable, AbortSet)
 PropOne = 7
 end
 methods
 function obj = AbortTheSet
 addlistener(obj,'PropOne','PreGet',@obj.getPrePropEvt);
 addlistener(obj,'PropOne','PreSet',@obj.setPrePropEvt);
 addlistener(obj,'PropOne','PostGet',@obj.getPostPropEvt);
 addlistener(obj,'PropOne','PostSet',@obj.setPostPropEvt);
 end
 function propval = get.PropOne(obj)
 disp('get.PropOne called')
 propval = obj.PropOne;
 end
 function set.PropOne(obj,val)
 disp('set.PropOne called')
 obj.PropOne = val;

 Assignment When Property Value Is Unchanged

11-45

 end
 function getPrePropEvt(obj,src,evnt)
 disp ('Pre-get event triggered')
 % ...
 end
 function setPrePropEvt(obj,src,evnt)
 disp ('Pre-set event triggered')
 % ...
 end
 function getPostPropEvt(obj,src,evnt)
 disp ('Post-get event triggered')
 % ...
 end
 function setPostPropEvt(obj,src,evnt)
 disp ('Post-set event triggered')
 % ...
 end
 function disp(obj)
 % Overload disp to avoid accessing property
 disp (class(obj))
 end
 end
end

The class specifies an initial value of 7 for the PropOne property. Therefore, if you create
an object and assign the property value of 7, there is no need to trigger the PreSet
event. However, the getPropOne method is called to get the current value of the
property to compare to the assigned vale.

obj = AbortTheSet;
obj.PropOne = 7;

get.PropOne called

If you specify a value other than 7, then MATLAB performs these steps:

• Gets the current property value
• Triggers the PreSet event
• Sets the property to the assigned value
• Triggers the PostSet event

obj = AbortTheSet;
obj.PropOne = 9;

11 Events — Sending and Responding to Messages

11-46

get.PropOne called
Pre-set event triggered
set.PropOne called
Post-set event triggered

If you query the property value, the PreGet and PostGet events are triggered.

obj.PropOne

Pre-get event triggered
get.PropOne called
Post-get event triggered

ans =

 9

Using AbortSet with Property Validation
When classes use property validation and AbortSet in a property definition, MATLAB
evaluates the property validation before comparing the current value to the value being
assigned. For example, revise the AbortTheSet class to add a size restriction of 1-by-3 to
the PropOne property.

classdef AbortTheSet < handle
 properties (SetObservable, GetObservable, AbortSet)
 % Restrict size to 1-by-3
 % ***********************
 PropOne (1,3) = [7 7 7]
 % ***********************
 end
 methods
 function obj = AbortTheSet
 addlistener(obj,'PropOne','PreGet',@obj.getPrePropEvt);
 addlistener(obj,'PropOne','PreSet',@obj.setPrePropEvt);
 addlistener(obj,'PropOne','PostGet',@obj.getPostPropEvt);
 addlistener(obj,'PropOne','PostSet',@obj.setPostPropEvt);
 end
 function propval = get.PropOne(obj)
 disp('get.PropOne called')
 propval = obj.PropOne;
 end
 function set.PropOne(obj,val)
 disp('set.PropOne called')

 Assignment When Property Value Is Unchanged

11-47

 obj.PropOne = val;
 end
 function getPrePropEvt(obj,src,evnt)
 disp ('Pre-get event triggered')
 % ...
 end
 function setPrePropEvt(obj,src,evnt)
 disp ('Pre-set event triggered')
 % ...
 end
 function getPostPropEvt(obj,src,evnt)
 disp ('Post-get event triggered')
 % ...
 end
 function setPostPropEvt(obj,src,evnt)
 disp ('Post-set event triggered')
 % ...
 end
 function disp(obj)
 % Overload disp to avoid accessing property
 disp (class(obj))
 end
 end
end

Because MATLAB applies scalar expansion to satisfy the size restriction, the following
assignment does not trigger the PreSet or PostSet events.

obj = AbortTheSet;
obj.PropOne = 7;

get.PropOne called

obj.PropOne

Pre-get event triggered
get.PropOne called
Post-get event triggered

ans =

 7 7 7

For information on property validation, see “Validate Property Values” on page 8-26.

11 Events — Sending and Responding to Messages

11-48

See Also

Related Examples
• “Property Access Methods” on page 8-52
• “Determine If Event Has Listeners” on page 11-37

 See Also

11-49

Techniques for Using Events and Listeners

In this section...
“Example Overview” on page 11-50
“Techniques Demonstrated in This Example” on page 11-51
“Summary of fcneval Class” on page 11-51
“Summary of fcnview Class” on page 11-52
“Methods Inherited from Handle Class” on page 11-54
“Using the fcneval and fcnview Classes” on page 11-54
“Implement UpdateGraph Event and Listener” on page 11-56
“The PostSet Event Listener” on page 11-60
“Enable and Disable Listeners” on page 11-63
“@fcneval/fcneval.m Class Code” on page 11-64
“@fcnview/fcnview.m Class Code” on page 11-65

Example Overview
This example defines two classes:

• fcneval — The function evaluator class contains a MATLAB expression and evaluates
this expression over a specified range

• fcnview — The function viewer class contains a fcneval object and displays surface
graphs of the evaluated expression using the data contained in fcneval.

This class defines two events:

• A class-defined event that occurs when a new value is specified for the MATLAB
function

• A property event that occurs when the property containing the limits is changed

The following diagram shows the relationship between the two objects. The fcnview
object contains a fcneval object and creates graphs from the data it contains. fcnview
creates listeners to change the graphs if any of the data in the fcneval object change.

11 Events — Sending and Responding to Messages

11-50

fcnview

Properties

Listeners

fcneval object

graph

Lm property

UpdateGraph

fcneval

Properties

Events

FofXY

Lm observable

Data

UpdateGraph

Techniques Demonstrated in This Example
• Naming an event in the class definition
• Triggering an event by calling notify
• Enabling a property event via the SetObservable attribute
• Creating listeners for class-defined events and property PostSet events
• Defining listener callback functions that accept additional arguments
• Enabling and disabling listeners

Summary of fcneval Class
The fcneval class evaluates a MATLAB expression over a specified range of two
variables. The fcneval is the source of the data that objects of the fcnview class graph
as a surface. fcneval is the source of the events used in this example. For a listing of the
class definition, see “@fcneval/fcneval.m Class Code” on page 11-64

 Techniques for Using Events and Listeners

11-51

Property Value Purpose
FofXY function

handle
MATLAB expression (function of two variables).

Lm two-element
vector

Limits over which function is evaluated in both
variables. SetObservable attribute set to true to
enable property event listeners.

Data structure with
x, y, and z
matrices

Data resulting from evaluating the function. Used for
surface graph. Dependent attribute set to true,
which means the get.Data method is called to
determine property value when queried and no data
is stored.

Event When Triggered
UpdateGraph FofXY property set function (set.FofXY) calls the notify method

when a new value is specified for the MATLAB expression on an
object of this class.

Method Purpose
fcneval Class constructor. Inputs are function handle and two-element vector

specifying the limits over which to evaluate the function.
set.FofXY FofXY property set function. Called whenever property value is set,

including during object construction.
set.Lm Lm property set function. Used to test for valid limits.
get.Data Data property get function. This method calculates the values for

the Data property whenever that data is queried (by class members
or externally).

grid A static method (Static attribute set to true) used in the
calculation of the data.

Summary of fcnview Class
Objects of the fcnview class contain fcneval objects as the source of data for the four
surface graphs created in a function view. fcnview creates the listeners and callback
functions that respond to changes in the data contained in fcneval objects. For a listing
of the class definition, see “@fcnview/fcnview.m Class Code” on page 11-65

11 Events — Sending and Responding to Messages

11-52

Property Value Purpose
FcnObject fcneval object This object contains the data that is used to

create the function graphs.
HAxes axes handle Each instance of a fcnview object stores the

handle of the axes containing its subplot.
HLUpdateGraph event.listener

object for
UpdateGraph event

Setting the event.listener object's
Enabled property to true enables the
listener; false disables listener.

HLLm event.listener
object for Lm property
event

Setting the event.listener object's
Enabled property to true enables the
listener, false disables listener.

HEnableCm uimenu handle Item on context menu used to enable
listeners (used to handle checked behavior)

HDisableCm uimenu handle Item on context menu used to disable
listeners (used to manage checked behavior)

HSurface surface handle Used by event callbacks to update surface
data.

Method Purpose
fcnview Class constructor. Input is fcneval object.
createLisn Calls addlistener to create listeners for UpdateGraph and

Lm property PostSet listeners.
lims Sets axes limits to current value of fcneval object's Lm

property. Used by event handlers.
updateSurfaceData Updates the surface data without creating a new object. Used

by event handlers.
listenUpdateGraph Callback for UpdateGraph event.
listenLm Callback for Lm property PostSet event
delete Delete method for fcnview class.
createViews Static method that creates an instance of the fcnview class

for each subplot, defines the context menus that enable/
disable listeners, and creates the subplots

 Techniques for Using Events and Listeners

11-53

Methods Inherited from Handle Class
Both the fcneval and fcnview classes inherit methods from the handle class. The
following table lists only those inherited methods used in this example.

“Handle Class Methods” on page 7-13 provides a complete list of methods that are
inherited when you subclass the handle class.

Methods
Inherited from
Handle Class

Purpose

addlistener Register a listener for a specific event and attach listener to event-
defining object.

notify Trigger an event and notify all registered listeners.

Using the fcneval and fcnview Classes
This section explains how to use the classes.

• Create an instance of the fcneval class to contain the MATLAB expression of a
function of two variables and the range over which you want to evaluate this function

• Use the fcnview class static function createViews to visualize the function
• Change the MATLAB expression or the limits contained by the fcneval object and all

the fcnview objects respond to the events generated.

You create a fcneval object by calling its constructor with two arguments—an
anonymous function and a two-element, monotonically increasing vector. For example:

feobject = fcneval(@(x,y) x.*exp(-x.^2-y.^2),[-2 2]);

Use the createViews static method to create the graphs of the function. Use the class
name to call a static function:

fcnview.createViews(feobject);

The createView method generates four views of the function contained in the fcneval
object.

11 Events — Sending and Responding to Messages

11-54

Each subplot defines a context menu that can enable and disable the listeners associated
with that graph. For example, if you disable the listeners on subplot 221 (upper left) and
change the MATLAB expression contained by the fcneval object, only the remaining
three subplots update when the UpdateGraph event is triggered:

feobject.FofXY = @(x,y) x.*exp(-x.^.5-y.^.5);

 Techniques for Using Events and Listeners

11-55

Similarly, if you change the limits by assigning a value to the feobject.Lm property, the
feobject triggers a PostSet property event and the listener callbacks update the
graph.

feobject.Lm = [-8 3];

In this figure, the listeners are reenabled via the context menu for subplot 221. Because
the listener callback for the property PostSet event also updates the surface data, all
views are now synchronized

Implement UpdateGraph Event and Listener
The UpdateGraph event occurs when the MATLAB representation of the mathematical
function contained in the fcneval object is changed. The fcnview objects that contain
the surface graphs are listening for this event, so they can update the graphs to represent
the new function.

Define and Trigger UpdateGraph Event

The UpdateGraph event is a class-defined event. The fcneval class names the event
and calls notify when the event occurs.

11 Events — Sending and Responding to Messages

11-56

3. The notify method triggers an

 event, and a message is broadcast.

5. The callback function is executed.

4. A listener awaiting the message

 executes its callback.

2. Setting the property runs a set access method,

 which, in turn, executes notify.

1. A property is assigned a new value. myfunceval

Properties

FofXY

Methods

Events

UpdateGraph

set.FofXY

Listener

Properties

EventName = ‘UpdateGraph’

FunctionHandle = @listenUpdateGraph

myfuncview

Methods

listenUpdateGraph

UpdateGraph

obj.FofXY = @(x,y)x^2+y^2

function set.FofXY(obj,func)

 obj.FofXY = func;

 notify(obj,’UpdateGraph’);

end

The fcnview class defines a listener for this event. When fcneval triggers the event,
the fcnview listener executes a callback function that performs the follow actions:

• Determines if the handle of the surface object stored by the fcnview object is still
valid (that is, does the object still exist)

• Updates the surface XData, YData, and ZData by querying the fcneval object's
Data property.

The fcneval class defines an event name in an event block:

 Techniques for Using Events and Listeners

11-57

events
 UpdateGraph
end

Determine When to Trigger Event

The fcneval class defines a property set method for the FofXY property. FofXY is the
property that stores the MATLAB expression for the mathematical function. This
expression must be a valid MATLAB expression for a function of two variables.

The set.FofXY method:

• Determines the suitability of the expression
• If the expression is suitable:

• Assigns the expression to the FofXY property
• Triggers the UpdateGraph event

If fcneval.isSuitable does not return an MException object, the set.FofXY
method assigns the value to the property and triggers the UpdateGraph event.

function set.FofXY(obj,func)
% Determine if function is suitable to create a surface
 me = fcneval.isSuitable(func);
 if ~isempty(me)
 throw(me)
 end
% Assign property value
 obj.FofXY = func;
% Trigger UpdateGraph event
 notify(obj,'UpdateGraph');
end

Determine Suitability of Expression

The set.FofXY method calls a static method (fcneval.isSuitable) to determine the
suitability of the specified expression. fcneval.isSuitable returns an MException
object if it determines that the expression is unsuitable. fcneval.isSuitable calls the
MException constructor directly to create more useful error messages for the user.

set.FofXY issues the exception using the MException.throw method. Issuing the
exception terminates execution of set.FofXY and prevents the method from making an
assignment to the property or triggering the UpdateGraph event.

11 Events — Sending and Responding to Messages

11-58

Here is the fcneval.isSuitable method:

function isOk = isSuitable(funcH)
 v = [1 1;1 1];
 % Can the expression except 2 numeric inputs
 try
 funcH(v,v);
 catch %#ok<CTCH>
 me = MException('DocExample:fcneval',...
 ['The function ',func2str(funcH),' Is not a suitable F(x,y)']);
 isOk = me;
 return
 end
 % Does the expression return non-scalar data
 if isscalar(funcH(v,v));
 me = MException('DocExample:fcneval',...
 ['The function ',func2str(funcH),'' Returns a scalar when evaluated']);
 isOk = me;
 return
 end
 isOk = [];
end

The fcneval.isSuitable method could provide additional test to ensure that the
expression assigned to the FofXY property meets the criteria required by the class
design.

Other Approaches

The class could have implemented a property set event for the FofXY property and
would, therefore, not need to call notify (see “Listen for Changes to Property Values” on
page 11-40). Defining a class event provides more flexibility in this case because you can
better control event triggering.

For example, suppose that you wanted to update the graph only if the new data is
different. If the new expression produced the same data within some tolerance, the
set.FofXY method could not trigger the event and avoid updating the graph. However,
the method could still set the property to the new value.

Listener and Callback for UpdateGraph Event

The fcnview class creates a listener for the UpdateGraph event using the
addlistener method:
obj.HLUpdateGraph = addlistener(obj.FcnObject,'UpdateGraph',...
 @(src,evnt)listenUpdateGraph(obj,src,evnt)); % Add obj to argument list

 Techniques for Using Events and Listeners

11-59

The fcnview object stores a handle to the event.listener object in its
HLUpdateGraph property, which is used to enable/disable the listener by a context menu
(see “Enable and Disable Listeners” on page 11-63).

The fcnview object (obj) is added to the two default arguments (src, evnt) passed to
the listener callback. Keep in mind, the source of the event (src) is the fcneval object,
but the fcnview object contains the handle of the surface object that the callback
updates.

The listenUpdateGraph function is defined as follows:

function listenUpdateGraph(obj,src,evnt)
 if ishandle(obj.HSurface) % If surface exists
 obj.updateSurfaceData % Update surface data
 end
end

The updateSurfaceData function is a class method that updates the surface data when
a different mathematical function is assigned to the fcneval object. Updating a graphics
object data is more efficient than creating a new object using the new data:

function updateSurfaceData(obj)
% Get data from fcneval object and set surface data
 set(obj.HSurface,...
 'XData',obj.FcnObject.Data.X,...
 'YData',obj.FcnObject.Data.Y,...
 'ZData',obj.FcnObject.Data.Matrix);
end

The PostSet Event Listener
All properties support the predefined PostSet event (See “Property-Set and Query
Events” on page 11-17 for more information on property events). This example uses the
PostSet event for the fcneval Lm property. This property contains a two-element vector
specifying the range over which the mathematical function is evaluated. Just after this
property is changed (by a statement like obj.Lm = [-3 5];), the fcnview objects
listening for this event update the graph to reflect the new data.

11 Events — Sending and Responding to Messages

11-60

3. A message is broadcast.

5. The callback function is executed.

4. A listener awaiting the message

 executes its callback.

2. The SetObservable attribute of Properties

 is set to True, so setting the property

 automatically triggers a PostSet event.

 Note that methods and events did not have

 to be declared in myfunceval.

1. New limits are assigned. myfunceval

Properties (SetObservable)

Lm

Listener

Properties

EventName = ‘PostSet’

FunctionHandle = @listenLm

myfuncview

Methods

listenLm

PostSet

obj.Lm = [-3 5];

Sequence During the Lm Property Assignment

The fcneval class defines a set function for the Lm property. When a value is assigned to
this property during object construction or property reassignment, the following
sequence occurs:

1 An attempt is made to assign argument value to Lm property.
2 The set.Lm method executes to check whether the value is in appropriate range — if

yes, it makes assignment, if no, it generates an error.
3 If the value of Lm is set successfully, MATLAB triggers a PostSet event.
4 All listeners execute their callbacks, but the order is nondeterministic.

 Techniques for Using Events and Listeners

11-61

The PostSet event does not occur until an actual assignment of the property occurs. The
property set function provides an opportunity to deal with potential assignment errors
before the PostSet event occurs.

Enable PostSet Property Event

To create a listener for the PostSet event, you must set the property's SetObservable
attribute to true:

properties (SetObservable = true)
 Lm = [-2*pi 2*pi]; % specifies default value
end

MATLAB automatically triggers the event so it is not necessary to call notify.

“Specify Property Attributes” on page 8-7 provides a list of all property attributes.

Listener and Callback for PostSet Event

The fcnview class creates a listener for the PostSet event using the addlistener
method:
obj.HLLm = addlistener(obj.FcnObject,'Lm','PostSet',...
 @(src,evnt)listenLm(obj,src,evnt)); % Add obj to argument list

The fcnview object stores a handle to the event.listener object in its HLLm property,
which is used to enable/disable the listener by a context menu (see “Enable and Disable
Listeners” on page 11-63).

The fcnview object (obj) is added to the two default arguments (src, evnt) passed to
the listener callback. Keep in mind, the source of the event (src) is the fcneval object,
but the fcnview object contains the handle of the surface object that the callback
updates.

The callback sets the axes limits and updates the surface data because changing the
limits causes the mathematical function to be evaluated over a different range:

function listenLm(obj,src,evnt)
 if ishandle(obj.HAxes) % If there is an axes
 lims(obj); % Update its limits
 if ishandle(obj.HSurface) % If there is a surface
 obj.updateSurfaceData % Update its data
 end
 end
end

11 Events — Sending and Responding to Messages

11-62

Enable and Disable Listeners
Each fcnview object stores the handle of the listener objects it creates so that the
listeners can be enabled or disabled via a context menu after the graphs are created. All
listeners are instances of the event.listener class, which defines a property called
Enabled. By default, this property has a value of true, which enables the listener. If you
set this property to false, the listener still exists, but is disabled. This example creates a
context menu active on the axes of each graph that provides a way to change the value of
the Enabled property.

Context Menu Callback

There are two callbacks used by the context menu corresponding to the two items on the
menu:

• Listen — Sets the Enabled property for both the UpdateGraph and PostSet
listeners to true and adds a check mark next to the Listen menu item.

• Don't Listen — Sets the Enabled property for both the UpdateGraph and PostSet
listeners to false and adds a check mark next to the Don't Listen menu item.

Both callbacks include the fcnview object as an argument (in addition to the required
source and event data arguments) to provide access to the handle of the listener objects.

The enableLisn function is called when the user selects Listen from the context menu.

function enableLisn(obj,src,evnt)
 obj.HLUpdateGraph.Enabled = true; % Enable listener
 obj.HLLm.Enabled = true; % Enable listener
 set(obj.HEnableCm,'Checked','on') % Check Listen
 set(obj.HDisableCm,'Checked','off') % Uncheck Don't Listen
end

The disableLisn function is called when the user selects Don't Listen from the context
menu.

function disableLisn(obj,src,evnt)
 obj.HLUpdateGraph.Enabled = false; % Disable listener
 obj.HLLm.Enabled = false; % Disable listener
 set(obj.HEnableCm,'Checked','off') % Unheck Listen
 set(obj.HDisableCm,'Checked','on') % Check Don't Listen
end

 Techniques for Using Events and Listeners

11-63

@fcneval/fcneval.m Class Code
classdef fcneval < handle
 properties
 FofXY
 end

 properties (SetObservable = true)
 Lm = [-2*pi 2*pi]
 end % properties SetObservable = true

 properties (Dependent = true)
 Data
 end

 events
 UpdateGraph
 end

 methods
 function obj = fcneval(fcn_handle,limits) % Constructor returns object
 if nargin > 0
 obj.FofXY = fcn_handle; % Assign property values
 obj.Lm = limits;

 end
 end

 function set.FofXY(obj,func)
 me = fcneval.isSuitable(func);
 if ~isempty(me)
 throw(me)
 end
 obj.FofXY = func;
 notify(obj,'UpdateGraph');
 end

 function set.Lm(obj,lim)
 if ~(lim(1) < lim(2))
 error('Limits must be monotonically increasing')
 else
 obj.Lm = lim;
 end
 end

 function data = get.Data(obj)
 [x,y] = fcneval.grid(obj.Lm);
 matrix = obj.FofXY(x,y);
 data.X = x;
 data.Y = y;
 data.Matrix = real(matrix);

 end

 end % methods

11 Events — Sending and Responding to Messages

11-64

 methods (Static = true)
 function [x,y] = grid(lim)
 inc = (lim(2)-lim(1))/20;
 [x,y] = meshgrid(lim(1):inc:lim(2));
 end % grid

 function isOk = isSuitable(funcH)
 v = [1 1;1 1];
 try
 funcH(v,v);
 catch %#ok<CTCH>
 me = MException('DocExample:fcneval',...
 ['The function ',func2str(funcH),' Is not a suitable F(x,y)']);
 isOk = me;
 return
 end
 if isscalar(funcH(v,v));
 me = MException('DocExample:fcneval',...
 ['The function ',func2str(funcH),' Returns a scalar when evaluated']);
 isOk = me;
 return
 end
 isOk = [];
 end

 end

end

@fcnview/fcnview.m Class Code
classdef fcnview < handle
 properties
 FcnObject % fcneval object
 HAxes % subplot axes handle
 HLUpdateGraph % UpdateGraph listener handle
 HLLm % Lm property PostSet listener handle
 HEnableCm % "Listen" context menu handle
 HDisableCm % "Don't Listen" context menu handle
 HSurface % Surface object handle
 end

 methods
 function obj = fcnview(fcnobj)
 if nargin > 0
 obj.FcnObject = fcnobj;
 obj.createLisn;
 end
 end

 Techniques for Using Events and Listeners

11-65

 function createLisn(obj)
 obj.HLUpdateGraph = addlistener(obj.FcnObject,'UpdateGraph',...
 @(src,evnt)listenUpdateGraph(obj,src,evnt));
 obj.HLLm = addlistener(obj.FcnObject,'Lm','PostSet',...
 @(src,evnt)listenLm(obj,src,evnt));
 end

 function lims(obj)
 lmts = obj.FcnObject.Lm;
 set(obj.HAxes,'XLim',lmts);
 set(obj.HAxes,'Ylim',lmts);
 end

 function updateSurfaceData(obj)
 data = obj.FcnObject.Data;
 set(obj.HSurface,...
 'XData',data.X,...
 'YData',data.Y,...
 'ZData',data.Matrix);
 end

 function listenUpdateGraph(obj,~,~)
 if ishandle(obj.HSurface)
 obj.updateSurfaceData
 end
 end

 function listenLm(obj,~,~)
 if ishandle(obj.HAxes)
 lims(obj);
 if ishandle(obj.HSurface)
 obj.updateSurfaceData
 end
 end
 end

 function delete(obj)
 if ishandle(obj.HAxes)
 delete(obj.HAxes);
 else
 return
 end
 end

11 Events — Sending and Responding to Messages

11-66

 end
 methods (Static)
 createViews(a)
 end
end

@fcnview/createViews
function createViews(fcnevalobj)
 p = pi; deg = 180/p;
 hfig = figure('Visible','off',...
 'Toolbar','none');

 for k=4:-1:1
 fcnviewobj(k) = fcnview(fcnevalobj);
 axh = subplot(2,2,k);
 fcnviewobj(k).HAxes = axh;
 hcm(k) = uicontextmenu;
 set(axh,'Parent',hfig,...
 'FontSize',8,...
 'UIContextMenu',hcm(k))
 fcnviewobj(k).HEnableCm = uimenu(hcm(k),...
 'Label','Listen',...
 'Checked','on',...
 'Callback',@(src,evnt)enableLisn(fcnviewobj(k),src,evnt));
 fcnviewobj(k).HDisableCm = uimenu(hcm(k),...
 'Label','Don''t Listen',...
 'Checked','off',...
 'Callback',@(src,evnt)disableLisn(fcnviewobj(k),src,evnt));
 az = p/k*deg;
 view(axh,az,30)
 title(axh,['View: ',num2str(az),' 30'])
 fcnviewobj(k).lims;
 surfLight(fcnviewobj(k),axh)
 end
 set(hfig,'Visible','on')
end
function surfLight(obj,axh)
 obj.HSurface = surface(obj.FcnObject.Data.X,...
 obj.FcnObject.Data.Y,...
 obj.FcnObject.Data.Matrix,...
 'FaceColor',[.8 .8 0],'EdgeColor',[.3 .3 .2],...
 'FaceLighting','phong',...
 'FaceAlpha',.3,...

 Techniques for Using Events and Listeners

11-67

 'HitTest','off',...
 'Parent',axh);
 lims(obj)
 camlight left; material shiny; grid off
 colormap copper
end

function enableLisn(obj,~,~)
 obj.HLUpdateGraph.Enabled = true;
 obj.HLLm.Enabled = true;
 set(obj.HEnableCm,'Checked','on')
 set(obj.HDisableCm,'Checked','off')
end

function disableLisn(obj,~,~)
 obj.HLUpdateGraph.Enabled = false;
 obj.HLLm.Enabled = false;
 set(obj.HEnableCm,'Checked','off')
 set(obj.HDisableCm,'Checked','on')
end

11 Events — Sending and Responding to Messages

11-68

How to Build on Other Classes

• “Hierarchies of Classes — Concepts” on page 12-2
• “Subclass Syntax” on page 12-7
• “Design Subclass Constructors” on page 12-9
• “Control Sequence of Constructor Calls” on page 12-14
• “Modify Inherited Methods” on page 12-16
• “Modify Inherited Properties” on page 12-20
• “Subclassing Multiple Classes” on page 12-22
• “Specify Allowed Subclasses” on page 12-25
• “Class Members Access” on page 12-28
• “Property Access List” on page 12-36
• “Method Access List” on page 12-37
• “Event Access List” on page 12-38
• “Handle Compatible Classes” on page 12-39
• “How to Define Handle-Compatible Classes” on page 12-41
• “Methods for Handle Compatible Classes” on page 12-46
• “Handle-Compatible Classes and Heterogeneous Arrays” on page 12-48
• “Subclasses of MATLAB Built-In Types” on page 12-50
• “Behavior of Inherited Built-In Methods” on page 12-54
• “Subclasses of Built-In Types Without Properties” on page 12-60
• “Subclasses of Built-In Types with Properties” on page 12-68
• “Use of size and numel with Classes” on page 12-77
• “Representing Hardware with Classes” on page 12-83
• “Determine Array Class” on page 12-87
• “Abstract Classes” on page 12-91
• “Define an Interface Superclass” on page 12-96

12

Hierarchies of Classes — Concepts
In this section...
“Classification” on page 12-2
“Develop the Abstraction” on page 12-3
“Design of Class Hierarchies” on page 12-4
“Super and Subclass Behavior” on page 12-4
“Implementation and Interface Inheritance” on page 12-5

Classification
Organizing classes into hierarchies facilitates the reuse of code and the reuse of solutions
to design problems that have already been solved. You can think of class hierarchies as
sets — supersets (referred to as superclasses or base classes), and subsets (referred to as
subclasses or derived classes). For example, the following picture shows how you could
represent an employee database with classes.

12 How to Build on Other Classes

12-2

Employees

Sales People and Engineers are

subsets of Employees

Test

Engineers

Sales

People

Engineers

Employees

Base class

Properties

Name

Address

Department

SalesPerson

(is an Employees)

Derived classes

Properties

Commission

Region

Engineer

(is an Employees)

Properties

Products

Team

TestEngineer

(is an Engineer)

Properties

TestStage

The root of the hierarchy is the Employees class. It contains data and operations that
apply to the set of all employees. Contained in the set of employees are subsets whose
members, while still employees, are also members of sets that more specifically define the
type of employee. Subclasses like TestEngineer are examples of these subsets.

Develop the Abstraction
Classes are representations of real world concepts or things. When designing a class,
form an abstraction of what the class represents. Consider an abstraction of an employee
and what are the essential aspects of employees for the intended use of the class. Name,
address, and department can be what all employees have in common.

 Hierarchies of Classes — Concepts

12-3

When designing classes, your abstraction contains only those elements that are necessary.
For example, the employee hair color and shoe size certainly characterize the employee,
but are probably not relevant to the design of this employee class. Their sales region is
relevant only to some employee so this characteristic belongs in a subclass.

Design of Class Hierarchies
As you design a system of classes, put common data and functionality in a superclass,
which you then use to derive subclasses. The subclasses inherit the data and functionality
of the superclass and define only aspects that are unique to their particular purposes.
This approach provides advantages:

• Avoid duplicating code that is common to all classes.
• Add or change subclasses at any time without modifying the superclass or affecting

other subclasses.
• If the superclass changes (for example, all employees are assigned a number), then

the subclass automatically get these changes.

Super and Subclass Behavior
Subclass objects behave like objects of the superclass because they are specializations of
the superclass. This fact facilitates the development of related classes that behave
similarly, but are implemented differently.

A Subclass Object “Is A” Superclass Object

You can usually describe the relationship between an object of a subclass and an object of
its superclass with a statement like:

The subclass is a superclass. For example: An Engineer is an Employee.

This relationship implies that objects belonging to a subclass have the same properties,
methods, and events as the superclass. Subclass objects also have any new features
defined by the subclass. Test this relationship with the isa function.

Treat Subclass Objects like Superclass Objects

You can pass a subclass object to a superclass method, but you can access only those
properties that the superclass defines. This behavior enables you to modify the subclasses
without affecting the superclass.

12 How to Build on Other Classes

12-4

Two points about super and subclass behavior to keep in mind are:

• Methods defined in the superclass can operate on subclass objects.
• Methods defined in the subclass cannot operate on superclass objects.

Therefore, you can treat an Engineer object like any other Employees object, but an
Employee object cannot pass for an Engineer object.

Limitations to Object Substitution

MATLAB determines the class of an object based on its most specific class. Therefore, an
Engineer object is of class Engineer, while it is also an Employees object, as using
the isa function reveals.

Generally, MATLAB does not allow you to create arrays containing a mix of superclass and
subclass objects because an array can be of only one class. If you attempt to concatenate
objects of different classes, MATLAB looks for a converter method defined by the less
dominant class

See “Concatenating Objects of Different Classes” on page 10-18 for more information.

See matlab.mixin.Heterogeneous for information on defining heterogeneous class
hierarchies.

See “Object Converters” on page 18-12 for information on defining converter methods.

Implementation and Interface Inheritance
MATLAB classes support both the inheritance of implemented methods from a superclass
and the inheritance of interfaces defined by abstract methods in the superclass.

Implementation inheritance enables code reuse by subclasses. For example, an employee
class can have a submitStatus method that all employee subclasses can use.
Subclasses can extend an inherited method to provide specialized functionality, while
reusing the common aspects. See “Modify Inherited Methods” on page 12-16 for more
information on this process.

Interface inheritance is useful in these cases:

• You want a group of classes to provide a common interface.
• Subclasses create specialized implementations of methods and properties.

 Hierarchies of Classes — Concepts

12-5

Create an interface using an abstract class as the superclass. This class defines the
methods and properties that you must implement in the subclasses, but does not provide
an implementation.

The subclasses must provide their own implementation of the abstract members of the
superclass. To create an interface, define methods and properties as abstract using their
Abstract attribute. See “Abstract Classes” on page 12-91 for more information and an
example.

See Also

Related Examples
• “Design Subclass Constructors” on page 12-9

12 How to Build on Other Classes

12-6

Subclass Syntax
In this section...
“Subclass Definition Syntax” on page 12-7
“Subclass double” on page 12-7

Subclass Definition Syntax
To define a class that is a subclass of another class, add the superclass to the classdef
line after a < character:

classdef ClassName < SuperClass

When inheriting from multiple classes, use the & character to indicate the combination of
the superclasses:

classdef ClassName < SuperClass1 & SuperClass2

See “Class Member Compatibility” on page 12-22 for more information on deriving from
multiple superclasses.

Class Attributes

Subclasses do not inherit superclass attributes.

Subclass double
Suppose you want to define a class that derived from double and restricts values to be
positive numbers. The PositiveDouble class:

• Supports a default constructor (no input arguments). See “No Input Argument
Constructor Requirement” on page 9-26

• Restricts the inputs to positive values using mustBePositive.
• Calls the superclass constructor with the input value to create the double numeric

value.

classdef PositiveDouble < double
 methods
 function obj = PositiveDouble(data)

 Subclass Syntax

12-7

 if nargin == 0
 data = 1;
 else
 mustBePositive(data)
 end
 obj = obj@double(data);
 end
 end
end

Create an object of the PositiveDouble class using a 1-by-5 array of numbers:

a = PositiveDouble(1:5);

You can perform operations on objects of this class like any double.

sum(a)

ans =

 15

Objects of the PositiveDouble class must be positive values.

a = PositiveDouble(0:5);

Error using mustBePositive (line 19)
Value must be positive.

Error in PositiveDouble (line 7)
 mustBePositive(data)

See Also

Related Examples
• “Design Subclass Constructors” on page 12-9
• “Subclasses of MATLAB Built-In Types” on page 12-50

12 How to Build on Other Classes

12-8

Design Subclass Constructors
In this section...
“Call Superclass Constructor Explicitly” on page 12-9
“Call Superclass Constructor from Subclass” on page 12-9
“Subclass Constructor Implementation” on page 12-11
“Call Only Direct Superclass from Constructor” on page 12-12

Call Superclass Constructor Explicitly
Explicitly calling each superclass constructor from a subclass constructor enables you to:

• Pass arguments to superclass constructors
• Control the order in which MATLAB calls the superclass constructors

If you do not explicitly call the superclass constructors from the subclass constructor,
MATLAB implicitly calls these constructors with no arguments. The superclass
constructors must support the no argument syntax to support implicit calls.

MATLAB does not guarantee any specific calling order when there are multiple
superclasses. If the order in which MATLAB calls the superclass constructors is
important, call the superclass constructors explicitly from the subclass constructor.

If you do not define a subclass constructor, you can call the default constructor with
superclass arguments. For more information, see “Default Constructor” on page 9-24 and
“Implicit Call to Inherited Constructor” on page 9-30.

Call Superclass Constructor from Subclass
To call the constructor for each superclass within the subclass constructor, use the
following syntax:

obj@SuperClass1(args,...);

...

obj@SuperclassN(args,...);

 Design Subclass Constructors

12-9

Where obj is the output of the subclass constructor, SuperClass... is the name of a
superclass, and args are any arguments required by the respective superclass
constructor.

For example, the following segment of a class definition shows that a class called Stocks
that is a subclass of a class called Assets.

classdef Stocks < Assets
 methods
 function s = Stocks(asset_args,...)
 if nargin == 0
 % Assign values to asset_args
 end
 % Call asset constructor
 s@Assets(asset_args);
 ...
 end
 end
end

“Subclass Constructors” on page 9-27 provides more information on creating subclass
constructor methods.

Reference Superclasses Contained in Packages

If a superclass is contained in a package, include the package name. For example, the
Assests class is in the finance package:

classdef Stocks < finance.Assets
 methods
 function s = Stocks(asset_args,...)
 if nargin == 0
 ...
 end
 % Call asset constructor
 s@finance.Assets(asset_args);
 ...
 end
 end
end

Initialize Objects Using Multiple Superclasses

To derive a class from multiple superclasses, initialize the subclass object with calls to
each superclass constructor:

12 How to Build on Other Classes

12-10

classdef Stocks < finance.Assets & Taxable
 methods
 function s = Stocks(asset_args,tax_args,...)
 if nargin == 0
 ...
 end
 % Call asset and member class constructors
 s@finance.Assets(asset_args)
 s@Taxable(tax_args)
 ...
 end
 end
end

Subclass Constructor Implementation
To ensure that your class constructor supports the zero arguments syntax, assign default
values to input argument variables before calling the superclass constructor. You cannot
conditionalize a subclass call to the superclass constructor. Locate calls to superclass
constructors outside any conditional code blocks.

For example, the Stocks class constructor supports the no argument case with the if
statement, but calls the superclass constructor outside of the if code block.

classdef Stocks < finance.Assets
 properties
 NumShares
 Symbol
 end
 methods
 function s = Stocks(description,numshares,symbol)
 if nargin == 0
 description = '';
 numshares = 0;
 symbol = '';
 end
 s@finance.Assets(description);
 s.NumShares = numshares;
 s.Symbol = symbol;
 end
 end
end

 Design Subclass Constructors

12-11

Call Only Direct Superclass from Constructor
Call only direct superclass constructors from a subclass constructor. For example,
suppose class B derives from class A and class C derives from class B. The constructor for
class C cannot call the constructor for class A to initialize properties. Class B must
initialize class A properties.

The following implementations of classes A, B, and C show how to design this relationship
in each class.

Class A defines properties x and y, but assigns a value only to x:

classdef A
 properties
 x
 y
 end
 methods
 function obj = A(x)
 ...
 obj.x = x;
 end
 end
end

Class B inherits properties x and y from class A. The class B constructor calls the class A
constructor to initialize x and then assigns a value to y.

classdef B < A
 methods
 function obj = B(x,y)
 ...
 obj@A(x);
 obj.y = y;
 end
 end
end

Class C accepts values for the properties x and y, and passes these values to the class B
constructor, which in turn calls the class A constructor:

classdef C < B
 methods
 function obj = C(x,y)

12 How to Build on Other Classes

12-12

 ...
 obj@B(x,y);
 end
 end
end

See Also

Related Examples
• “No Input Argument Constructor Requirement” on page 9-26

 See Also

12-13

Control Sequence of Constructor Calls
MATLAB does not guarantee the sequence in which superclass constructors are called
when constructing a subclass object. However, you can control this order by calling
superclass constructors explicitly from the subclass constructor.

If you explicitly call a superclass constructor from the most specific subclass constructor
(ClassC in the following diagram), then MATLAB calls the most specific subclass
constructor first. If you do not make an explicit call to a superclass constructor from the
subclass constructor, MATLAB makes the implicit call when accessing the object.

Suppose that you have a hierarchy of classes in which ClassC derives from ClassB,
which derives from ClassA. The constructor for a subclass can call only direct
superclasses. Therefore, each class constructor can call the direct superclass constructor:

In cases of multiple inheritance, the subclass constructor can call each superclass
constructor. To ensure that a specific superclass constructor calling sequence is followed,
call all direct superclass constructors explicitly from the most specific subclass
constructor:

12 How to Build on Other Classes

12-14

See Also

Related Examples
• “Call Only Direct Superclass from Constructor” on page 12-12
• “Class Constructor Methods” on page 9-22

 See Also

12-15

Modify Inherited Methods
In this section...
“When to Modify Superclass Methods” on page 12-16
“Extend Superclass Methods” on page 12-16
“Redefine Superclass Methods in Subclass” on page 12-17
“Override Superclass Methods” on page 12-18

When to Modify Superclass Methods
Class design enable you to pass a subclass object to a superclass method and have the
method execute properly. At the same time, subclass methods can apply special
processing to the unique aspects of the subclass. Some useful techniques include:

• Extend — Calling a superclass method from within a subclass method
• Redefine — Reimplementing in the subclass, the protected methods that are called

from within a public superclass method
• Override — Defining the same named methods in both super and subclass, but using
different implementations

Extend Superclass Methods
Subclass methods can call superclass methods of the same name. This technique enables
you to extend a superclass method in a subclass without completely redefining the
superclass method.

For example, suppose that both superclass and subclass define a method called foo. The
method names are the same so the subclass method can call the superclass method.
However, the subclass method can also perform other steps before and after the call to
the superclass method. It can operate on the specialized parts to the subclass that are not
part of the superclass.

For example, this subclass defines a foo method that calls the superclass foo method

classdef Sub < Super
 methods
 function foo(obj)
 % preprocessing steps

12 How to Build on Other Classes

12-16

 ...
 foo@Super(obj);
 % postprocessing steps
 ...
 end
 end
end

Redefine Superclass Methods in Subclass
A superclass method can define a process that executes in a series of steps using a
protected method for each step (Access attribute set to protected). Then, subclasses
can create their own versions of the protected methods that implement the individual
steps in the process.

Implement this technique as shown here:

classdef Super
 methods
 function foo(obj)
 step1(obj) % Call step1
 step2(obj) % Call step2
 step3(obj) % Call step3
 end
 end
 methods (Access = protected)
 function step1(obj)
 % Superclass version
 end
 function step2(obj)
 % Superclass version
 end
 function step3(obj)
 % Superclass version
 end
 end
end

The subclass does not reimplement the foo method, it reimplements only the methods
that carry out the series of steps (step1(obj), step2(obj), step3(obj)). That is, the
subclass can specialize the actions taken by each step, but does not control the order of
the steps in the process. When you pass a subclass object to the superclass foo method,
MATLAB calls the subclass step methods because of the dispatching rules.

 Modify Inherited Methods

12-17

classdef Sub < Super
 ...
 methods (Access = protected)
 function step1(obj)
 % Subclass version
 end
 function step2(obj)
 % Subclass version
 end
 function step3(obj)
 % Subclass version
 end
 ...
 end
end

Override Superclass Methods
You can completely redefine a superclass method in a subclass. In this case, both the
superclass and the subclass would define a method with the same name. However, the
implementation would be different and the subclass method would not call the superclass
method.

classdef Super
 methods
 function foo(obj)
 % Superclass implementation
 end
 end
end

classdef Sub < Super
 methods
 function foo(obj)
 % Subclass implementation
 end
 end
end

12 How to Build on Other Classes

12-18

See Also

Related Examples
• “Invoking Superclass Methods in Subclass Methods” on page 9-20

 See Also

12-19

Modify Inherited Properties
In this section...
“Superclass Property Modification” on page 12-20
“Private Local Property Takes Precedence in Method” on page 12-20

Superclass Property Modification
There are two separate conditions under which you can redefine superclass properties:

• The value of the superclass property Abstract attribute is true
• The values of the superclass property SetAccess and GetAccess attributes are

private

If a superclass defines a property as abstract, the subclass must implement a concrete
version of this property or the subclass is also abstract. Superclasses define abstract
properties to create a consistent interface among subclasses.

If a superclass defines a property with private access, then only the superclass can access
this property. The subclass can implement a different property with the same name.

Private Local Property Takes Precedence in Method
When superclass and subclass define a property with the same name, methods that refer
to this property access the property of the class defining the method.

For example, if a subclass property has the same name as a superclass private property,
and a method of the superclass references the property name, MATLAB accesses the
property defined by the superclass.

Consider the following classes, Super and Sub:

classdef Super
 properties (Access = private)
 Prop = 2
 end
 methods
 function p = superMethod(obj)
 p = obj.Prop;

12 How to Build on Other Classes

12-20

 end
 end
end

classdef Sub < Super
 properties
 Prop = 1
 end
end

If you create an instance of the Sub class and use it to call the superclass method,
MATLAB accesses the private property of the superclass:

subObj = Sub

subObj =

 Sub with properties:

 Prop: 1

subObj.superMethod

ans =

 2

See Also

More About
• “Property Attributes” on page 8-9

 See Also

12-21

Subclassing Multiple Classes

In this section...
“Specify Multiple Superclasses” on page 12-22
“Class Member Compatibility” on page 12-22
“Multiple Inheritance” on page 12-23

Specify Multiple Superclasses
When inheriting from multiple classes, use the & character to indicate the combination of
the superclasses:

classdef ClassName < SuperClass1 & SuperClass2

For more information on class syntax, see “Subclass Syntax” on page 12-7.

Class Member Compatibility
When you create a subclass derived from multiple superclasses, the subclass inherits the
properties, methods, and events defined by all specified superclasses. If more than one
superclass defines a property, method, or event having the same name, there must be an
unambiguous resolution to the multiple definitions. You cannot derive a subclass from any
two or more classes that define incompatible class members.

Here are various situations where you can resolve name and definition conflicts.

Property Conflicts

If two or more superclasses define a property with the same name, then at least one of
the following must be true:

• All, or all but one of the properties must have their SetAccess and GetAccess
attributes set to private

• The properties have the same definition in all superclasses (for example, when all
superclasses inherited the property from a common base class)

12 How to Build on Other Classes

12-22

Method Conflicts

If two or more superclasses define methods with the same name, then at least one of the
following must be true:

• The method Access attribute is private so only the defining superclass can access
the method.

• The method has the same definition in all subclasses. This situation can occur when all
superclasses inherit the method from a common base class and none of the
superclasses override the inherited definition.

• The subclass redefines the method to disambiguate the multiple definitions across all
superclasses. Therefore, the superclass methods must not have their Sealed attribute
set to true.

• Only one superclass defines the method as Sealed, in which case, the subclass adopts
the sealed method definition.

• The superclasses define the methods as Abstract and rely on the subclass to define
the method.

Event Conflicts

If two or more superclasses define events with the same name, then at least one of the
following must be true:

• The event ListenAccess and NotifyAccess attributes must be private.
• The event has the same definition in all superclasses (for example, when all

superclasses inherited the event from a common base class)

Multiple Inheritance
Resolving the potential conflicts involved when defining a subclass from multiple classes
often reduces the value of this approach. For example, problems can arise when you
enhance superclasses in future versions and introduce new conflicts.

Reduce potential problems by implementing only one unrestricted superclass. In all other
superclasses, all methods are

• Abstract
• Defined by a subclass

 Subclassing Multiple Classes

12-23

• Inherited from the unrestricted superclass

When using multiple inheritance, ensure that all superclasses remain free of conflicts in
definition.

See Also

Related Examples
• “Design Subclass Constructors” on page 12-9
• “Handle Compatible Classes” on page 12-39

12 How to Build on Other Classes

12-24

Specify Allowed Subclasses
In this section...
“Basic Knowledge” on page 12-25
“Why Control Allowed Subclasses” on page 12-25
“Specify Allowed Subclasses” on page 12-25
“Define Sealed Hierarchy of Classes” on page 12-27

Basic Knowledge
The material presented in this section builds on an understanding of the following
information:

• “Class Metadata” on page 17-2
• “Attribute Specification” on page 5-22

Why Control Allowed Subclasses
A class definition can specify a list of classes that it allows as subclasses. Classes not in
the list cannot be defined as subclass of the class. To specify the allowed subclasses, use
the AllowedSubclasses class attribute.

The AllowedSubclasses attribute provides a design point between Sealed classes,
which do not allow subclassing, and the default behavior, which does not restrict
subclassing.

By controlling the allowed subclasses, you can create a sealed hierarchy of classes. That
is, a system of classes that enables a specific set of classes to derive from specific base
classes, but that does not allow unrestricted subclassing.

See “Define Sealed Hierarchy of Classes” on page 12-27 for more about this technique.

Specify Allowed Subclasses
Specify a list of one or more allowed subclasses in the classdef statement by assigning
meta.class objects to the AllowedSubclasses attribute. Create the meta.class
object referencing a specific class using the ? operator and the class name:

 Specify Allowed Subclasses

12-25

classdef (AllowedSubclasses = ?ClassName) MySuperClass
 ...
end

Use a cell array of meta.class objects to define more than one allowed subclass:
classdef (AllowedSubclasses = {?ClassName1,?ClassName2,...?ClassNameN}) MySuperClass
 ...
end

Always use the fully qualified class name when referencing the class name:
classdef (AllowedSubclasses = ?Package.SubPackage.ClassName1) MySuperClass
 ...
end

Assigning an empty cell array to the AllowedSubclasses attribute is effectively the
same as defining a Sealed class.

classdef (AllowedSubclasses = {}) MySuperClass
 ...
end

Note Use only the ? operator and the class name to generate meta.class objects.
Values assigned to the AllowedSubclasses attribute cannot contain any other MATLAB
expressions, including functions that return either meta.class objects or cell arrays of
meta.class objects.

Result of Declaring Allowed Subclasses

Including a class in the list of AllowedSubclasses does not define that class as a
subclass or require you to define the class as a subclass. It just allows the referenced
class to be defined as a subclass.

Declaring a class as an allowed subclass does not affect whether this class can itself be
subclassed.

A class definition can contain assignments to the AllowedSubclasses attribute that
reference classes that are not currently defined or available on the MATLAB path.
However, any referenced subclass that MATLAB cannot find when loading the class is
effectively removed from the list without causing an error or warning.

Note If MATLAB does not find any of the classes in the allowed classes list, the class is
effectively Sealed. A sealed class is equivalent to AllowedSubclasses = {}.

12 How to Build on Other Classes

12-26

Use the meta.class property RestrictsSubclassing to determine if a class is
Sealed or specifies AllowedSubclasses.

Define Sealed Hierarchy of Classes
The AllowedSubclasses attribute enables you to define a sealed class hierarchy by
sealing the allowed subclasses:

classdef (AllowedSubclasses = {?SubClass1,?SubClass2}) SuperClass
 ...
end

Define the allowed subclasses as Sealed:

classdef (Sealed) SubClass1
 ...
end

classdef (Sealed) SubClass2
 ...
end

Sealed class hierarchies enable you to use the level of abstraction that your design
requires while maintaining a closed system of classes.

See Also

Related Examples
• “Handle Compatible Classes” on page 12-39

 See Also

12-27

Class Members Access
In this section...
“Basic Knowledge” on page 12-28
“Applications for Access Control Lists” on page 12-29
“Specify Access to Class Members” on page 12-29
“Properties with Access Lists” on page 12-31
“Methods with Access Lists” on page 12-31
“Abstract Methods with Access Lists” on page 12-35

Basic Knowledge
The material presented in this section builds on an understanding of the following
information:

Related Topics

• “Class Metadata” on page 17-2
• “Attribute Specification” on page 5-22

Terminology and Concepts

• Class members — Properties, methods, and events defined by a class
• Defining class — The class defining the class member for which access is being
specified

• Get access — Permission to read the value of a property, controlled by the property
GetAccess attribute

• Set access — Permission to assign a value to a property; controlled by the property
SetAccess attribute

• Method access – Determines what other methods and functions can call the class
method; controlled by the method Access attribute

• Listen access — Permission to define listeners; controlled by the event ListenAccess
attribute

• Notify access — Permission to trigger events, controlled by the event NotifyAccess
attribute

12 How to Build on Other Classes

12-28

Possible Values for Access to Class Members

The following class member attributes can contain a list of classes:

• Properties — Access, GetAccess, and SetAccess. For a list of all property
attributes, see “Property Attributes” on page 8-9 .

• Methods — Access. For a list of all method attributes, see “Method Attributes” on
page 9-5 .

• Events — ListenAccess and NotifyAccess. For a list of all event attributes, see
“Event Attributes” on page 11-19.

These attributes accept the following possible values:

• public — Unrestricted access
• protected — Access by defining class and its subclasses
• private — Access by defining class only
• Access list — A list of one or more classes. Only the defining class and the classes in

the list have access to the class members to which the attribute applies. If you specify
a list of classes, MATLAB does not allow access by any other class (that is, access is
private, except for the listed classes).

Applications for Access Control Lists
Access control lists enable you to control access to specific class properties, methods, and
events. Access control lists specify a list of classes to which you grant access to these
class members.

This technique provides greater flexibility and control in the design of a system of classes.
For example, use access control lists to define separate classes, but not allow access to
class members from outside the class system.

Specify Access to Class Members
Specify the classes that are allowed to access a particular class member in the member
access attribute statement. For example:

methods (Access = {?ClassName1,?ClassName2,...})

 Class Members Access

12-29

Use the class meta.class object to refer to classes in the access list. To specify more
than one class, use a cell array of meta.class objects. Use the package name when
referring to classes that are in packages.

Note Specify the meta.class objects explicitly (created with the ? operator), not as
values returned by functions or other MATLAB expressions.

How MATLAB Interprets Attribute Values

• Granting access to a list of classes restricts access to only:

• The defining class
• The classes in the list
• Subclasses of the classes in the list

• Including the defining class in the access list gives all subclasses of the defining class
access.

• MATLAB resolves references to classes in the access list only when the class is loaded.
If MATLAB cannot find a class that is included in the access list, that class is
effectively removed from access.

• MATLAB replaces unresolved meta.class entries in the list with empty meta.class
objects.

• An empty access list (that is, an empty cell array) is equivalent to private access.

Specify Metaclass Objects

Generate the meta.class objects using only the ? operator and the class name. Values
assigned to the attributes cannot contain any other MATLAB expressions, including
functions that return allowed attribute values:

• meta.class objects
• Cell arrays of meta.class objects
• The values public, protected, or private

Specify these values explicitly, as shown in the example code in this section.

12 How to Build on Other Classes

12-30

Properties with Access Lists
These sample classes show the behavior of a property that grants read access
(GetAccess) to a class. The GrantAccess class gives GetAccess to the NeedAccess
class for the Prop1 property:

classdef GrantAccess
 properties (GetAccess = ?NeedAccess)
 Prop1 = 7
 end
end

The NeedAccess class defines a method that uses the value of the GrantAccess Prop1
value. The dispObj method is defined as a Static method, however, it could be an
ordinary method.

classdef NeedAccess
 methods (Static)
 function dispObj(GrantAccessObj)
 disp(['Prop1 is: ',num2str(GrantAccessObj.Prop1)])
 end
 end
end

Get access to Prop1 is private so MATLAB returns an error if you attempt to access the
property from outside the class definition. For example, from the command line:

a = GrantAccess;
a.Prop1

Getting the 'Prop1' property of the 'GrantAccess' class is not allowed.

However, MATLAB allows access to Prop1 by the NeedAccess class:

NeedAccess.dispObj(a)

Prop1 is: 7

Methods with Access Lists
Classes granted access to a method can:

• Call the method using an instance of the defining class.

 Class Members Access

12-31

• Define their own method with the same name (if not a subclass).
• Override the method in a subclass only if the superclass defining the method includes

itself or the subclass in the access list.

These sample classes show the behavior of methods called from methods of other classes
that are in the access list. The class AcListSuper gives the AcListNonSub class access
to its m1 method:

classdef AcListSuper
 methods (Access = {?AcListNonSub})
 function obj = m1(obj)
 disp ('Method m1 called')
 end
 end
end

Because AcListNonSub is in the access list of m1, its methods can call m1 using an
instance of AcListSuper:

classdef AcListNonSub
 methods
 function obj = nonSub1(obj,AcListSuper_Obj)
 % Call m1 on AcListSuper class
 AcListSuper_Obj.m1;
 end
 function obj = m1(obj)
 % Define a method named m1
 disp(['Method m1 defined by ',class(obj)])
 end
 end
end

Create objects of both classes:

a = AcListSuper;
b = AcListNonSub;

Call the AcListSuper m1 method using an AcListNonSub method:

b.nonSub1(a);

Method m1 called

Call the AcListNonSub m1 method:

12 How to Build on Other Classes

12-32

b.m1;

Method m1 defined by AcListNonSub

Subclasses Without Access

Including the defining class in the access list for a method grants access to all subclasses
derived from that class. When you derive from a class that has a method with an access
list and that list does not include the defining class:

• Subclass methods cannot call the superclass method.
• Subclass methods can call the superclass method indirectly using an instance of a

class that is in the access list.
• Subclasses cannot override the superclass method.
• Methods of classes that are in the superclass method access list, but that are not

subclasses, can call the superclass method.

For example, AcListSub is a subclass of AcListSuper. The AcListSuper class defines
an access list for method m1. However, this list does not include AcListSuper, so
subclasses of AcListSuper do not have access to method m1:
classdef AcListSub < AcListSuper
 methods
 function obj = sub1(obj,AcListSuper_Obj)
 % Access m1 via superclass object (***NOT ALLOWED***)
 AcListSuper_Obj.m1;
 end
 function obj = sub2(obj,AcListNonSub_Obj,AcListSuper_obj)
 % Access m1 via object that is in access list (is allowed)
 AcListNonSub_Obj.nonSub1(AcListSuper_Obj);
 end
 end
end

No Direct Call to Superclass Method

Attempting to call the superclass m1 method from the sub1 method results in an error
because subclasses are not in the access list for m1:

a = AcListSuper;
c = AcListSub;
c.sub1(a);

Cannot access method 'm1' in class 'AcListSuper'.

 Class Members Access

12-33

Error in AcListSub/sub1 (line 4)
 AcListSuper_Obj.m1;

Indirect Call to Superclass Method

You can call a superclass method from a subclass that does not have access to that
method using an object of a class that is in the superclass method access list.

The AcListSub sub2 method calls a method of a class (AcListNonSub) that is on the
access list for m1. This method, nonSub1, does have access to the superclass m1 method:

a = AcListSuper;
b = AcListNonSub;
c = AcListSub;
c.sub2(b,a);

Method m1 called

No Redefining Superclass Method

When subclasses are not included in the access list for a method, those subclasses cannot
define a method with the same name. This behavior is not the same as cases in which the
method Access is explicitly declared as private.

For example, adding the following method to the AcListSub class definition produces an
error when you attempt to instantiate the class.

methods (Access = {?AcListNonSub})
 function obj = m1(obj)
 disp('AcListSub m1 method')
 end
end

c = AcListSub;

Class 'AcListSub' is not allowed to override the method 'm1' because neither it nor its
superclasses have been granted access to the method by class 'AcListSuper'.

Call Superclass from Listed Class Via Subclass

The AcListNonSub class is in the m1 method access list. This class can define a method
that calls the m1 method using an object of the AcListSub class. While AcListSub is not
in the access list for method m1, it is a subclass of AcListSuper.

For example, add the following method to the AcListNonSub class:

12 How to Build on Other Classes

12-34

methods
 function obj = nonSub2(obj,AcListSub_Obj)
 disp('Call m1 via subclass object:')
 AcListSub_Obj.m1;
 end
end

Calling the nonSub2 method results in execution of the superclass m1 method:

b = AcListNonSub;
c = AcListSub;
b.nonSub2(c);

Call m1 via subclass object:
Method m1 called

This behavior is consistent with the behavior of any subclass object, which can substitute
for an object of its superclass.

Abstract Methods with Access Lists
A class containing a method declared as Abstract is an abstract class. It is the
responsibility of subclasses to implement the abstract method using the function
signature declared in the class definition.

When an abstract method has an access list, only the classes in the access list can
implement the method. A subclass that is not in the access list cannot implement the
abstract method so that subclass is itself abstract.

See Also

Related Examples
• “Property Access List” on page 12-36
• “Method Access List” on page 12-37
• “Event Access List” on page 12-38

 See Also

12-35

Property Access List
This class declares access lists for the property GetAccess and Access attributes:
classdef PropertyAccess
 properties (GetAccess = {?ClassA, ?ClassB}, SetAccess = private)
 Prop1
 end
 properties (Access = ?ClassC)
 Prop2
 end
end

The class PropertyAccess specifies the following property access:

• Gives the classes ClassA and ClassB get access to the Prop1 property.
• Gives all subclasses of ClassA and ClassB get access to the Prop1 property.
• Does not provide get access to Prop1 from subclasses of PropertyAccess.
• Defines private set access for the Prop1 property.
• Gives set and get access to Prop2 for ClassC and its subclasses.

See Also

Related Examples
• “Properties with Access Lists” on page 12-31

12 How to Build on Other Classes

12-36

Method Access List
This class declares an access list for the method Access attribute:

classdef MethodAccess
 methods (Access = {?ClassA, ?ClassB, ?MethodAccess})
 function listMethod(obj)
 ...
 end
 end
end

The MethodAccess class specifies the following method access:

• Access to listMethod from an instance of MethodAccess by methods of the classes
ClassA and ClassB.

• Access to listMethod from an instance of MethodAccess by methods of subclasses
of MethodAccess, because of the inclusion of MethodAccess in the access list.

• Subclasses of ClassA and ClassB are allowed to define a method named
listMethod, and MethodAccess is allowed to redefine listMethod. However, if
MethodAccess was not in the access list, its subclasses could not redefine
listMethod.

See Also

Related Examples
• “Methods with Access Lists” on page 12-31

 Method Access List

12-37

Event Access List
This class declares an access list for the event ListenAccess attribute:

classdef EventAccess
 events (NotifyAccess = private, ListenAccess = {?ClassA, ?ClassB})
 Event1
 Event2
 end
end

The class EventAccess specifies the following event access:

• Limits notify access for Event1 and Event2 to EventAccess; only methods of the
EventAccess can trigger these events.

• Gives listen access for Event1 and Event2 to methods of ClassA and ClassB.
Methods of EventAccess, ClassA, and ClassB can define listeners for these events.
Subclasses of MyClass cannot define listeners for these events.

See Also

Related Examples
• “Events and Listeners Syntax” on page 11-22

12 How to Build on Other Classes

12-38

Handle Compatible Classes
In this section...
“Basic Knowledge” on page 12-39
“When to Use Handle Compatible Classes” on page 12-39
“Handle Compatibility Rules” on page 12-40
“Identify Handle Objects” on page 12-40

Basic Knowledge
The material presented in this section builds on knowledge of the following information.

• “Design Subclass Constructors” on page 12-9
• “Subclassing Multiple Classes” on page 12-22
• “Comparison of Handle and Value Classes” on page 7-2

Key Concepts

Handle-compatible class — a class that you can include with handle classes in a class
hierarchy, even if the class is not a handle class.

• All handle classes are handle-compatible.
• All superclasses of handle-compatible classes must also be handle compatible.

HandleCompatible — the class attribute that defines nonhandle classes as handle
compatible.

When to Use Handle Compatible Classes
Typically, when deriving a MATLAB class from other classes, all the superclasses are
handle classes, or else none of them are handle classes. However, there are situations in
which a class provides some utility that is used by both handle and non-handle subclasses.
Because it is not legal to combine handle and non-handle classes, the author of the utility
class must implement two distinct versions of the utility.

The solution is to use handle-compatible classes. Handle compatible classes are a type of
class that you can use with handle classes when forming sets of superclasses. Designate a

 Handle Compatible Classes

12-39

nonhandle compatible class as handle-compatible by using the HandleCompatible class
attribute.

classdef (HandleCompatible) MyClass
 ...
end

Handle Compatibility Rules
Handle-compatible classes (that is, classes whose HandleCompatible attribute is set to
true) follow these rules:

• All superclasses of a handle-compatible class must also be handle compatible
• If a class explicitly sets its HandleCompatibility attribute to false, then none of

the class superclasses can be handle classes.
• If a class does not explicitly set its HandleCompatible attribute and, if any

superclass is a handle, then all superclasses must be handle compatible.
• The HandleCompatible attribute is not inherited.

A class that does not explicitly set its HandleCompatible attribute to true is:

• A handle class if any of its superclasses are handle classes
• A value class if none of the superclasses are handle classes

Identify Handle Objects
To determine if an object is a handle object, use the isa function:

isa(obj,'handle')

See Also

Related Examples
• “How to Define Handle-Compatible Classes” on page 12-41

12 How to Build on Other Classes

12-40

How to Define Handle-Compatible Classes
In this section...
“What Is Handle Compatibility?” on page 12-41
“Subclassing Handle-Compatible Classes” on page 12-43

What Is Handle Compatibility?
A class is handle compatible if:

• It is a handle class
• Its HandleCompatible attribute is set to true

The HandleCompatible class attribute identifies classes that you can combine with
handle classes when specifying a set of superclasses.

Handle compatibility provides greater flexibility when defining abstract superclasses. For
example, when using superclasses that support both handle and value subclasses, handle
compatibility removes the need to define both a handle version and a nonhandle version
of a class.

A Handle Compatible Class

The Utility class is useful to both handle and value subclasses. In this example, the
Utility class defines a method to reset property values to the default values defined in
the respective class definition:

classdef (HandleCompatible) Utility
 methods
 function obj = resetDefaults(obj)
 mc = metaclass(obj);
 mp = mc.PropertyList;
 for k=1:length(mp)
 if mp(k).HasDefault && ~strcmp(mp(k).SetAccess,'private')
 obj.(mp(k).Name) = mp(k).DefaultValue;
 end
 end
 end
 end
end

 How to Define Handle-Compatible Classes

12-41

The Utility class is handle compatible. Therefore, you can use it in the derivation of
classes that are either handle classes or value classes. See “Class Introspection and
Metadata” for information on using meta-data classes.

Return Modified Objects

The resetDefaults method defined by the Utility class returns the object it modifies.
When you call resetDefaults with a value object, the method must return the modified
object. It is important to implement methods that work with both handle and value
objects in a handle compatible superclass. See “Object Modification” on page 5-63 for
more information on modifying handle and value objects.

Consider the behavior of a value class that subclasses the Utility class. The
PropertyDefaults class defines three properties, all of which have default values:

classdef PropertyDefaults < Utility
 properties
 p1 = datestr(rem(now,1)) % Current time
 p2 = 'red' % Character vector
 p3 = pi/2 % Result of division operation
 end
end

Create a PropertyDefaults object. MATLAB evaluates the expressions assigned as
default property values when the class is first loaded. MATLAB uses these same default
values whenever you create an instance of this class in the current MATLAB session.

pd = PropertyDefaults

pd =

 PropertyDefaults with properties:

 p1: ' 4:42 PM'
 p2: 'red'
 p3: 1.5708

Assign new values that are different from the default values:

pd.p1 = datestr(rem(now,1));
pd.p2 = 'green';
pd.p3 = pi/4;

All pd object property values now contain values that are different from the default values
originally defined by the class:

12 How to Build on Other Classes

12-42

pd

pd =

 PropertyDefaults with properties:
:
 p1: ' 4:45 PM'
 p2: 'green'
 p3: 0.7854

Call the resetDefaults method, which is inherited from the Utility class. Because
the PropertyDefaults class is not a handle class, return the modified object.

pd = pd.resetDefaults

pd =

 PropertyDefaults with properties:

 p1: ' 4:54 PM'
 p2: 'red'
 p3: 1.5708

If the PropertyDefaults class was a handle class, then you would not need to save the
object returned by the resetDefaults method. To design a handle compatible class like
Utility, ensure that all methods work with both kinds of classes.

Subclassing Handle-Compatible Classes
According to the rules described in “Handle Compatibility Rules” on page 12-40, when
you combine a handle superclass with a handle-compatible superclass, the result is a
handle subclass, which is handle compatible.

However, subclassing a handle-compatible class does not necessarily result in the
subclass being handle compatible. Consider the following two cases, which demonstrate
two possible results.

Combine Nonhandle Utility Class with Handle Classes

Suppose that you define a class that subclasses a handle class, and the handle compatible
Utility class discussed in “A Handle Compatible Class” on page 12-41. The
HPropertyDefaults class has these characteristics:

 How to Define Handle-Compatible Classes

12-43

• It is a handle class (it derives from handle).
• All its superclasses are handle compatible (handle classes are handle compatible by
definition).

classdef HPropertyDefaults < handle & Utility
 properties
 GraphPrim = line
 Width = 1.5
 Color = 'black'
 end
end

The HPropertyDefaults class is handle compatible:

hpd = HPropertyDefaults;
mc = metaclass(hpd);
mc.HandleCompatible

ans =

 1

Nonhandle Subclasses of a Handle-Compatible Class

If you subclass both a value class that is not handle compatible and a handle compatible
class, the subclass is a nonhandle compatible value class. The ValueSub class:

• Is a value class (it does not derive from handle.)
• One of its superclasses is handle compatible (the Utility class).

classdef ValueSub < MException & Utility
 methods
 function obj = ValueSub(str1,str2)
 obj = obj@MException(str1,str2);
 end
 end
end

The ValueSub class is a nonhandle-compatible value class because the MException
class does not define the HandleCompatible attribute as true:

hv = ValueSub('MATLAB:narginchk:notEnoughInputs',...
 'Not enough input arguments.');
mc = metaclass(hv);
mc.HandleCompatible

12 How to Build on Other Classes

12-44

ans =

 0

See Also

Related Examples
• “Methods for Handle Compatible Classes” on page 12-46

 See Also

12-45

Methods for Handle Compatible Classes
In this section...
“Methods for Handle and Value Objects” on page 12-46
“Modify Value Objects in Methods” on page 12-46

Methods for Handle and Value Objects
Objects passed to methods of handle compatible classes can be either handle or value
objects. There are two different behaviors to consider when implementing methods for a
class that operate on both handles and values:

• If an input object is a handle object and the method alters the handle object, these
changes are visible to all workspaces that contain the same handle.

• If an input object is a value object, then changes to the object made inside the method
affect only the value inside the method workspace.

Handle compatible methods generally do not alter input objects because the effects of
such changes are not the same for handle and nonhandle objects.

See “Object Modification” on page 5-63 for information about modifying handle and value
objects.

Modify Value Objects in Methods
If a method operates on both handle and value objects, the method must return the
modified object. For example, the setTime method returns the object it modifies:

classdef (HandleCompatible) Util
 % Utility class that adds a time stamp
 properties
 TimeStamp
 end
 methods
 function obj = setTime(obj)
 obj.TimeStamp = now;
 end
 end
end

12 How to Build on Other Classes

12-46

See Also

Related Examples
• “Handle-Compatible Classes and Heterogeneous Arrays” on page 12-48

 See Also

12-47

Handle-Compatible Classes and Heterogeneous Arrays

In this section...
“Heterogeneous Arrays” on page 12-48
“Methods Must Be Sealed” on page 12-48
“Template Technique” on page 12-48

Heterogeneous Arrays
A heterogeneous array contains objects of different classes. Members of a heterogeneous
array have a common superclass, but can belong to different subclasses. See the
matlab.mixin.Heterogeneous class for more information on heterogeneous arrays.
The matlab.mixin.Heterogeneous class is a handle-compatible class.

Methods Must Be Sealed
You can invoke only those methods that are sealed by the common superclass on
heterogeneous arrays (Sealed attribute set to true). Sealed methods prevent subclasses
from overriding those methods and guarantee that methods called on heterogeneous
arrays have the same definition for the entire array.

Subclasses cannot override sealed methods. In situations requiring subclasses to
specialize methods defined by a utility class, you can employ the design pattern referred
to as the template method.

Template Technique
Suppose that you implement a handle compatible class that works with heterogeneous
arrays. This approach enables you to seal public methods, while providing a way for each
subclass to specialize how the method works on each subclass instance. In the handle
compatible class:

• Define a sealed method that accepts a heterogeneous array as input.
• Define a protected, abstract method that each subclass must implement.
• Within the sealed method, call the overridden method for each array element.

12 How to Build on Other Classes

12-48

Each subclass in the heterogeneous hierarchy implements a concrete version of the
abstract method. The concrete method provides specialized behavior required by the
particular subclass.

The Printable class shows how to implement a template method approach:

classdef (HandleCompatible) Printable
 methods(Sealed)
 function print(aryIn)
 n = numel(aryIn);
 for k=1:n
 printElement(aryIn(k));
 end
 end
 end
 methods(Access=protected, Abstract)
 printElement(objIn)
 end
end

See Also

Related Examples
• “Handle Compatible Classes” on page 12-39

 See Also

12-49

Subclasses of MATLAB Built-In Types
In this section...
“MATLAB Built-In Types” on page 12-50
“Built-In Types You Can Subclass” on page 12-50
“Why Subclass Built-In Types” on page 12-51
“Which Functions Work with Subclasses of Built-In Types” on page 12-51
“Behavior of Built-In Functions with Subclass Objects” on page 12-51
“Built-In Subclasses That Define Properties” on page 12-52

MATLAB Built-In Types
Built-in types represent fundamental kinds of data such as numeric arrays, logical arrays,
and character arrays. Other built-in types like cell arrays and structures contain data
belonging to any class.

Built-in types define methods that perform operations on objects of these classes. For
example, you can perform operations on numeric arrays such as, sorting, arithmetic, and
logical operations.

See “Fundamental MATLAB Classes” for more information on MATLAB built-in classes.

Note It is an error to define a class that has the same name as a built-in class.

Built-In Types You Can Subclass
You can subclass MATLAB numeric classes and the logical class. For a list of numeric
types, see “Numeric Types”.

You cannot subclass any class that has its Sealed attribute set to true. To determine if
the class is Sealed, query the class metadata:

mc = ?ClassName;
mc.Sealed

A value of 0 indicates that the class is not Sealed and can be subclasses.

12 How to Build on Other Classes

12-50

Why Subclass Built-In Types
Subclass a built-in class to extend the operations that you can perform on a particular
class of data. For example , when you want to:

• To perform unique operations on class data.
• Be able to use methods of the built-in class and other built-in functions directly with

objects of the subclass. For example, you do not need to reimplement all the
mathematical operators if you derived from a class such as double that defines these
operators.

Which Functions Work with Subclasses of Built-In Types
Consider a class that defines enumerations. It can derive from an integer class and inherit
methods that enable you to compare and sort values. For example, integer classes like
int32 support all the relational methods (eq, ge, gt, le, lt, ne).

To see a list of functions that the subclass has inherited as methods, use the methods
function:

methods('SubclassName')

Generally, you can use an object of the subclass with any:

• Inherited methods
• Functions that normally accept input arguments of the same class as the superclass.

Behavior of Built-In Functions with Subclass Objects
When you define a subclass of a built-in class, the subclass inherits all the methods
defined by that built-in class. MATLAB also provides additional methods to subclasses of
built-in classes that override several built-in functions.

Built-in functions and methods that work on built-in classes can behave differently when
called with subclasses of built-in classes. Their behavior depends on which function you
are using and whether your subclass defines properties.

 Subclasses of MATLAB Built-In Types

12-51

Behavior Categories

When you call an inherited method on a subclass of a built-in class, the result depends on
the nature of the operation performed by the method. The behaviors of these methods fit
into several categories.

• Operations on data values return objects of the superclass. For example, if you
subclass double and perform addition on two subclass objects, MATLAB adds the
numeric values and returns a value of class double.

• Operations on the orientation or structure of the data return objects of the subclass.
Methods that perform these kinds of operations include, reshape, permute,
transpose, and so on.

• Converting a subclass object to a built-in class returns an object of the specified class.
Functions such as uint32, double, char work with subclass objects the same as they
work with built-in objects.

• Comparing objects or testing for inclusion in a specific set returns logical or built-in
objects, depending on the function. Functions such as isequal, ischar, isobject
work with subclass objects the same as they work with superclass objects.

• Indexing expressions return objects of the subclass. If the subclass defines properties,
then default indexing no longer works. The subclass must define its own indexing
methods.

• Concatenation returns an object of the subclass. If the subclass defines properties,
then default concatenation no longer works and the subclass must define its own
concatenation methods.

To list the built-in functions that work with a subclass of a built-in class, use the methods
function.

Built-In Subclasses That Define Properties
When a subclass of a built-in class defines properties, MATLAB no longer supports
indexing and concatenation operations. MATLAB cannot use the built-in functions
normally called for these operations because subclass properties can contain any data.

The subclass must define what indexing and concatenation mean for a class with
properties. If your subclass needs indexing and concatenation functionality, then the
subclass must implement the appropriate methods.

12 How to Build on Other Classes

12-52

Methods for Indexing

To support indexing operations, the subclass must implement these methods:

• subsasgn — Implement dot notation and indexed assignments
• subsref — Implement dot notation and indexed references
• subsindex — Implement object as index value

Methods for Concatenation

To support concatenation, the subclass must implement the following methods:

• horzcat — Implement horizontal concatenation of objects
• vertcat — Implement vertical concatenation of objects
• cat — Implement concatenation of object arrays along specified dimension

See Also

Related Examples
• “Representing Hardware with Classes” on page 12-83
• “Subclasses of Built-In Types with Properties” on page 12-68
• “Subclasses of Built-In Types Without Properties” on page 12-60

 See Also

12-53

Behavior of Inherited Built-In Methods
In this section...
“Subclass double” on page 12-54
“Built-In Data Value Methods” on page 12-55
“Built-In Data Organization Methods” on page 12-56
“Built-In Indexing Methods” on page 12-57
“Built-In Concatenation Methods” on page 12-57

Subclass double
Most built-in functions used with built-in classes are actually methods of the built-in class.
For example, the double and single classes define several methods to perform
arithmetic operations, indexing, matrix operation, and so on. All these built-in class
methods work with subclasses of the built-in class.

Subclassing double enables your class to use features without implementing the
methods that a MATLAB built-in class defines.

The DocSimpleDouble class subclasses the built-in double class.

classdef DocSimpleDouble < double
 methods
 function obj = DocSimpleDouble(data)
 if nargin == 0
 data = 0;
 end
 obj = obj@double(data);
 end
 end
end

Create an instance of the class DocSimpleDouble.

sc = DocSimpleDouble(1:10)

sc =
 1x10 DocSimpleDouble:
 double data:
 1 2 3 4 5 6 7 8 9 10

12 How to Build on Other Classes

12-54

Call a method inherited from class double that operates on the data, such as sum. sum
returns a double and, therefore, uses the display method of class double:

sum(sc)

ans =
 55

Index sc like an array of doubles. The returned value is the class of the subclass:

a = sc(2:4)

a =
 1x3 DocSimpleDouble:
 double data:
 2 3 4

Indexed assignment works the same as the built-in class. The returned value is the class
of the subclass:

sc(1:5) = 5:-1:1

sc =
 1x10 DocSimpleDouble:
 double data:
 5 4 3 2 1 6 7 8 9 10

Calling a method that modifies the order of the data elements operates on the data, but
returns an object of the subclass:

sc = DocSimpleDouble(1:10);
sc(1:5) = 5:-1:1;
a = sort(sc)

a =
 1x10 DocSimpleDouble:
 double data:
 1 2 3 4 5 6 7 8 9 10

Built-In Data Value Methods
When you call a built-in data value method on a subclass object, MATLAB uses the
superclass part of the subclass object as inputs to the method. The value returned is same
class as the built-in class. For example:

 Behavior of Inherited Built-In Methods

12-55

sc = DocSimpleDouble(1:10);
a = sin(sc);
class(a)

ans =

double

Built-In Data Organization Methods
This group of built-in methods reorders or reshapes the input argument array. These
methods operate on the superclass part of the subclass object, but return an object of the
same type as the subclass.

sc = DocSimpleDouble(randi(9,1,10))

sc = DocSimpleDouble(randi(9,1,10))

sc =

 1x10 DocSimpleDouble:

 double data:
 6 1 8 9 7 7 7 4 6 2

b = sort(sc)

b =

 1x10 DocSimpleDouble:

 double data:
 1 2 4 6 6 7 7 7 8 9

Methods in this group include:

• reshape
• permute
• sort
• transpose
• ctranspose

12 How to Build on Other Classes

12-56

Built-In Indexing Methods
Built-in classes use specially implemented versions of the subsref, subsasgn, and
subsindex methods to implement indexing. When you index a subclass object, only the
built-in data is referenced (not the properties defined by your subclass).

For example, indexing element 2 in the DocSimpleDouble subclass object returns the
second element in the vector:

sc = DocSimpleDouble(1:10);
a = sc(2)

a =
 DocSimpleDouble
 double data:
 2

The value returned from an indexing operation is an object of the subclass. You cannot
make indexed references if your subclass defines properties, unless your subclass
overrides the default subsref method.

Assigning a new value to the second element in the DocSimpleDouble object operates
only on the superclass data:

sc(2) = 12

sc =
 1x10 DocSimpleDouble:
 double data:
 1 12 3 4 5 6 7 8 9 10

The subsref method also implements dot notation for methods.

Built-In Concatenation Methods
Built-in classes use the functions horzcat, vertcat, and cat to implement
concatenation. When you use these functions with subclass objects of the same type,
MATLAB concatenates the superclass data to form a new object. For example, you can
concatenate objects of the DocSimpleDouble class:

sc1 = DocSimpleDouble(1:10);
sc2 = DocSimpleDouble(11:20);
[sc1,sc2]

 Behavior of Inherited Built-In Methods

12-57

ans =
 1x20 DocSimpleDouble:
 double data:
 Columns 1 through 13
 1 2 3 4 5 6 7 8 9 10 11 12 13
 Columns 14 through 20
 14 15 16 17 18 19 20

[sc1;sc2]

ans =
 2x10 DocSimpleDouble:
 double data:
 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20

Concatenate two objects along a third dimension:

c = cat(3,sc1,sc2)

c =

 1x10x2 DocSimpleDouble:

 double data:

(:,:,1) =

 1 2 3 4 5 6 7 8 9 10

(:,:,2) =

 11 12 13 14 15 16 17 18 19 20

If the subclass of a built-in class defines properties, you cannot concatenate objects of the
subclass. There is no way to determine how to combine properties of different objects.
However, your subclass can define custom horzcat and vertcat methods to support
concatenation in whatever way makes sense for your subclass.

See Also

Related Examples
• “Subclasses of Built-In Types Without Properties” on page 12-60

12 How to Build on Other Classes

12-58

• “Subclasses of Built-In Types with Properties” on page 12-68

 See Also

12-59

Subclasses of Built-In Types Without Properties
In this section...
“Specialized Numeric Types” on page 12-60
“A Class to Manage uint8 Data” on page 12-60
“Using the DocUint8 Class” on page 12-61

Specialized Numeric Types
Subclass built-in numeric types to create customized data types that inherit the
functionality of the built-in type. Add functionality to that provided by the superclass by
implementing class methods. Subclasses without properties store numeric data as the
superclass type. If your subclass design does not require properties to store other data,
the implementation is simpler because you do not need to define indexing and
concatenation methods.

For more information, see “Subclasses of MATLAB Built-In Types” on page 12-50.

A Class to Manage uint8 Data
This example shows a class derived from the built-in uint8 class. This class simplifies the
process of maintaining a collection of intensity image data defined by uint8 values. The
basic operations of the class include:

• Capability to convert various classes of image data to uint8 to reduce object data
storage.

• A method to display the intensity images contained in the subclass objects.
• Ability to use all the methods supported by uint8 data (for example, size, indexing,

reshape, bitshift, cat, fft, arithmetic operators, and so on).

The class data are matrices of intensity image data stored in the superclass part of the
subclass object. This approach requires no properties.

The DocUint8 class stores the image data, which converts the data, if necessary:

classdef DocUint8 < uint8
 methods
 function obj = DocUint8(data)

12 How to Build on Other Classes

12-60

 if nargin == 0
 data = uint8(0);
 end
 obj = obj@uint8(data); % Store data on superclass
 end
 function h = showImage(obj)
 data = uint8(obj);
 figure; colormap(gray(256))
 h = imagesc(data,[0 255]);
 axis image
 brighten(.2)
 end
 end
end

Using the DocUint8 Class
Create DocUint8 Objects

The DocUint8 class provides a method to display all images stored as DocUint8 objects
in a consistent way. For example:

cir = imread('circuit.tif');
img1 = DocUint8(cir);
img1.showImage;

 Subclasses of Built-In Types Without Properties

12-61

50 100 150 200 250

50

100

150

200

250

Because DocUint8 subclasses uint8, you can use any uint8 methods. For example,

size(img1)

ans =
 280 272

returns the size of the image data.

Indexing Operations

Inherited methods perform indexing operations, but return objects of the same class as
the subclass.

Therefore, you can index into the image data and call a subclass method:

12 How to Build on Other Classes

12-62

showImage(img1(100:200,1:160));

Subscripted reference operations (controlled by the inherited subsref method) return a
DocUint8 object.

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

You can assign values to indexed elements:

img1(100:120,140:160) = 255;
img1.showImage;

Subscripted assignment operations (controlled by the inherited subsasgn method) return
a DocUint8 object.

 Subclasses of Built-In Types Without Properties

12-63

50 100 150 200 250

50

100

150

200

250

Concatenation Operations

Concatenation operations work on DocUint8 objects because this class inherits the
uint8 horzcat and vertcat methods, which return a DocUint8 object:

showImage([img1 img1]);

12 How to Build on Other Classes

12-64

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

Data Operations

Methods that operate on data values, such as arithmetic operators, always return an
object of the built-in type (not of the subclass type). For example, multiplying DocUint8
objects returns a uint8 object:

a = img1.*1.8;
showImage(a);

Undefined function 'showImage' for input arguments of type 'uint8'.

To perform operations of this type, implement a subclass method to override the inherited
method. The times method implements array (element-by-element) multiplication.

Add this method to the DocUint8 class:

 Subclasses of Built-In Types Without Properties

12-65

function o = times(obj,val)
 u8 = uint8(obj).*val;
 o = DocUint8(u8);
end

When you override a uint8 method, MATLAB calls the subclass method, not the base
class method. The subclass method must:

• Call the uint8 times method on the DocUint8 object data.
• Construct a new DocUint8 object using the uint8 data.

After adding the times method to the DocUint8 class, the output of multiplication
expressions is an object of the DocUint8 class:

showImage(img1.*1.8);

12 How to Build on Other Classes

12-66

50 100 150 200 250

50

100

150

200

250

See Also

Related Examples
• “Operator Overloading” on page 18-47
• “Subclasses of Built-In Types with Properties” on page 12-68

 See Also

12-67

Subclasses of Built-In Types with Properties

In this section...
“Specialized Numeric Types with Additional Data Storage” on page 12-68
“Subclasses with Properties” on page 12-68
“Property Added” on page 12-69
“Methods Implemented” on page 12-69
“Class Definition Code” on page 12-69
“Using ExtendDouble” on page 12-72
“Concatenation of ExtendDouble Objects” on page 12-75

Specialized Numeric Types with Additional Data Storage
Subclass built-in numeric types to create customized data types that inherit the
functionality of the built-in type. Add or modify functionality to that provided by the
superclass by implementing class methods.

Providing additional data storage in the subclass by defining properties can be a useful
extension to the built-in data class. However, the addition of properties to the subclass
requires the subclass to define methods to implement standard array behaviors.

For more information, see “Subclasses of MATLAB Built-In Types” on page 12-50.

Subclasses with Properties
When a subclass of a built-in class defines properties, default indexing and concatenation
do not work. The default subsref, subsasgn, horzcat, and vertcat functions cannot
work with unknown property types and values. Therefore, the subclass must define these
behaviors by implementing these methods.

This sample implementation of the ExtendDouble class derives from the double class
and defines a single property. The ExtendDouble class definition demonstrates how to
implement indexing and concatenation for subclasses of built-in classes

12 How to Build on Other Classes

12-68

Property Added
The ExtendDouble class defines the DataString property to contain text that describes
the data. The superclass part of the class contains the numeric data.

Methods Implemented
The following methods modify the behavior of the ExtendDouble class:

• ExtendDouble — The constructor supports a no argument syntax that initializes
properties to empty values.

• subsref — Enables subscripted reference to the superclass part of the subclass, dot
notation reference to the DataString property, and dot notation reference the built-
in data via the name Data.

• subsasgn — Enables subscripted assignment to the superclass part of the subclass,
dot notation reference to the DataString property, and dot notation reference the
built-in data via the name Data.

• horzcat — Defines horizontal concatenation of ExtendDouble objects. concatenates
the superclass part using the double class horzcat method and forms a cell array of
the DataString properties.

• vertcat — The vertical concatenation equivalent of horzcat (both are required).
• char — A ExtendDouble to char converter used by horzcat and vertcat.
• disp — ExtendDouble implements a disp method to provide a custom display for

the object.

Class Definition Code
The ExtendDouble class extends double and implements methods to support
subscripted indexing and concatenation.

classdef ExtendDouble < double

 properties
 DataString
 end

 methods
 function obj = ExtendDouble(data,str)
 if nargin == 0

 Subclasses of Built-In Types with Properties

12-69

 data = 0;
 str = '';
 elseif nargin == 1
 str = '';
 end
 obj = obj@double(data);
 obj.DataString = str;
 end

 function sref = subsref(obj,s)
 switch s(1).type
 case '.'
 switch s(1).subs
 case 'DataString'
 sref = obj.DataString;
 case 'Data'
 d = double(obj);
 if length(s)<2
 sref = d;
 elseif length(s)>1 && strcmp(s(2).type,'()')
 sref = subsref(d,s(2:end));
 end
 otherwise
 error('Not a supported indexing expression')
 end
 case '()'
 d = double(obj);
 newd = subsref(d,s(1:end));
 sref = ExtendDouble(newd,obj.DataString);
 case '{}'
 error('Not a supported indexing expression')
 end
 end

 function obj = subsasgn(obj,s,b)
 switch s(1).type
 case '.'
 switch s(1).subs
 case 'DataString'
 obj.DataString = b;
 case 'Data'
 if length(s)<2
 obj = ExtendDouble(b,obj.DataString);
 elseif length(s)>1 && strcmp(s(2).type,'()')

12 How to Build on Other Classes

12-70

 d = double(obj);
 newd = subsasgn(d,s(2:end),b);
 obj = ExtendDouble(newd,obj.DataString);
 end
 otherwise
 error('Not a supported indexing expression')
 end
 case '()'
 d = double(obj);
 newd = subsasgn(d,s(1),b);
 obj = ExtendDouble(newd,obj.DataString);
 case '{}'
 error('Not a supported indexing expression')
 end
 end

 function newobj = horzcat(varargin)
 d1 = cellfun(@double,varargin,'UniformOutput',false);
 data = horzcat(d1{:});
 str = horzcat(cellfun(@char,varargin,'UniformOutput',false));
 newobj = ExtendDouble(data,str);
 end

 function newobj = vertcat(varargin)
 d1 = cellfun(@double,varargin,'UniformOutput',false);
 data = vertcat(d1{:});
 str = vertcat(cellfun(@char,varargin,'UniformOutput',false));
 newobj = ExtendDouble(data,str);
 end

 function str = char(obj)
 str = obj.DataString;
 end

 function disp(obj)
 disp(obj.DataString)
 disp(double(obj))
 end
 end
end

 Subclasses of Built-In Types with Properties

12-71

Using ExtendDouble
Create an instance of ExtendDouble and notice that the display is different from the
default:

ed = ExtendDouble(1:10,'One to ten')

ed =

One to ten
 1 2 3 4 5 6 7 8 9 10

Inherited Methods

The ExtendDouble class inherits methods from the class double. To see a list of all
public methods defined by the double class, use the methods function:

methods(double.empty)

The sum function continues to operate on the superclass part of the object:

sum(ed)

ans =
 55

The sort function works on the superclass part of the object:

sort(ed(10:-1:1))

ans =

 1 2 3 4 5 6 7 8 9 10

Arithmetic operators work on the superclass part of the object:

ed.^2

ans =

 1 4 9 16 25 36 49 64 81 100

Subscripted Indexing

Because the ExtendDouble class defines a property, the class must implement its own
subsref and subsasgn methods.

12 How to Build on Other Classes

12-72

This class implements the following subscripted indexing expressions for reference and
assignment.

• obj.DataString — access the DataString property.
• obj.Data, obj.Data(ind) — access the data using a property-style reference.

Reference returns values of type double.
• obj(ind) — access the numeric data (same as obj.Data(ind)). Reference returns

values of type ExtendDouble.

The class subsref method enables you to use ExtendDouble objects like numeric
arrays to reference the numeric data:

ed = ExtendDouble(1:10,'One to ten');
ed(10:-1:1)

ans =

One to ten
 10 9 8 7 6 5 4 3 2 1

Access the numeric data of the ExtendDouble using property-style indexing with the
arbitrarily chosen name Data:

ed.Data(10:-1:1)

ans =

One to ten
 10 9 8 7 6 5 4 3 2 1

Access the DataString property:

ed.DataString

ans =

One to ten

Subscripted assignment implements similar syntax in the class subsasgn method.

ed = ExtendDouble(1:10,'One to ten');
ed(11:13) = [11,12,13];
ed.DataString = 'one to thirteen';
ed

 Subclasses of Built-In Types with Properties

12-73

ed =

One to thirteen'
 1 2 3 4 5 6 7 8 9 10 11 12 13

The ExtendDouble inherits converter methods from the double class. For example,
MATLAB calls the char method to perform this assignment statement.

ed(11:13) = ['a','b','c']

ed =

one to thirteen
 1 2 3 4 5 6 7 8 9 10 97 98 99

Class of Value Returned by Indexing Expression

The ExtendDouble implements two forms of indexed reference in the subsref method:

• obj.Data and obj.Data(ind) — Return values of class double
• obj(ind) — Return values of class ExtendDouble

For example, compare the values returned by these expressions.

ed = ExtendDouble(1:10,'One to ten');
a = ed(1)

a =

One to ten
 1

b = ed.Data(1)

b =

 1

whos

 Name Size Bytes Class Attributes

 a 1x1 132 ExtendDouble
 b 1x1 8 double
 ed 1x10 204 ExtendDouble

12 How to Build on Other Classes

12-74

The increased flexibility of the implementation of indexed reference in the
ExtendDouble class.

Concatenation of ExtendDouble Objects
Create these two objects:

ed1 = ExtendDouble([1:10],'One to ten');
ed2 = ExtendDouble([10:-1:1],'Ten to one');

Concatenate these objects along the horizontal dimension:

hcat = [ed1,ed2]

hcat =

 'One to ten' 'Ten to one'

 Columns 1 through 13

 1 2 3 4 5 6 7 8 9 10 10 9 8

 Columns 14 through 20

 7 6 5 4 3 2 1

whos

 Name Size Bytes Class Attributes

 ed1 1x10 204 ExtendDouble
 ed2 1x10 204 ExtendDouble
 hcat 1x20 528 ExtendDouble

Vertical concatenation works in a similar way:

vcat = [ed1;ed2]

vcat =

 'One to ten' 'Ten to one'

 1 2 3 4 5 6 7 8 9 10
 10 9 8 7 6 5 4 3 2 1

Both horzcat and vertcat return a new object of the same class as the subclass.

 Subclasses of Built-In Types with Properties

12-75

See Also

Related Examples
• “Subclasses of Built-In Types Without Properties” on page 12-60

12 How to Build on Other Classes

12-76

Use of size and numel with Classes
In this section...
“size and numel” on page 12-77
“Built-In Class Behavior” on page 12-77
“Subclasses Inherit Behavior” on page 12-78
“Classes Not Derived from Built-In Classes” on page 12-79
“Change the Behavior of size or numel” on page 12-81
“Overload numArgumentsFromSubscript Instead of numel” on page 12-82

size and numel
The size function returns the dimensions of an array. The numel function returns the
number of elements in an array, which is equivalent to prod(size(objArray)). That is,
the product of the array dimensions.

The size and numel functions work consistently with arrays of user-defined objects.
There is generally no need to overload size or numel in user-defined classes.

Several MATLAB functions use size and numel to perform their operations. Therefore, if
you do overload either of these functions in your class, be sure that objects of your class
work as designed with other MATLAB functions.

If your class modifies array indexing, see “Overload numArgumentsFromSubscript
Instead of numel” on page 12-82

Built-In Class Behavior
When you use the size and numel functions in classes derived from built-in classes,
these functions behave the same as they behave in the superclass.

Consider the built-in class double:

d = 1:10;
size(d)

ans =

 1 10

 Use of size and numel with Classes

12-77

numel(d)

ans =

 10

dsub = d(7:end);
size(dsub)

ans =

 1 4

The double class defines these behaviors, including parentheses indexing.

Subclasses Inherit Behavior
Unless the subclass explicitly overrides superclass behavior, subclasses behave like their
superclasses. For example, SimpleDouble subclasses double and defines no properties:

classdef SimpleDouble < double
 methods
 function obj = SimpleDouble(data)
 if nargin == 0
 data = 0;
 end
 obj = obj@double(data);
 end
 end
end

Create an object and assign the values 1:10:

sd = SimpleDouble(1:10);

The size function returns the size of the superclass part:

size(sd)

ans =

 1 10

The numel function returns the number of elements in the superclass part:

12 How to Build on Other Classes

12-78

numel(sd)

ans =

 10

Object arrays return the size of the superclass arrays:

size([sd;sd])

ans =

 2 10

numel([sd;sd])

ans =

 20

The SimpleDouble class inherits the indexing behavior of the double class:

sdsub = sd(7:end);
size(sdsub)

ans =

 1 4

Classes Not Derived from Built-In Classes
Consider a simple value class. This class does not inherit the array-like behaviors of the
double class. For example:

classdef VerySimpleClass
 properties
 Value
 end
end

Create an object and assign a 10-element array to the Value property:

vs = VerySimpleClass;
vs.Value = 1:10;
size(vs)

 Use of size and numel with Classes

12-79

ans =

 1 1

numel(vs)

ans =

 1

size([vs;vs])

ans =

 2 1

numel([vs;vs])

ans =

 2

vs is a scalar object. The Value property is an array of doubles:

size(vs.Value)

ans =

 1 10

Apply indexing expressions to the object property:

vssub = vs.Value(7:end);
size(vssub)

ans =

 1 4

The vs.Value property is an array of class double:

class(vs.Value)

ans =

double

12 How to Build on Other Classes

12-80

Create an array of VerySimpleClass objects:

vsArray(1:10) = VerySimpleClass;

The Value property for array elements 2 through 10 is empty:

isempty([vsArray(2:10).Value])

ans =

 1

MATLAB does not apply scalar expansion to object array property value assignment. Use
the deal function for this purpose:

[vsArray.Value] = deal(1:10);
isempty([vsArray.Value])

ans =

 0

The deal function assigns values to each Value property in the vsArray object array.

Indexing rules for object arrays are equivalent to the rules for arrays of struct:

vsArray(1).Value

ans =

 1 2 3 4 5 6 7 8 9 10

vsArray(1).Value(6)

ans =

 6

Change the Behavior of size or numel
Subclasses of built-in numeric classes inherit a size method, which operates on the
superclass part of the subclass object (these methods are hidden). If you want size or
numel to behave differently, override them by defining a size or numel method in your
subclass.

 Use of size and numel with Classes

12-81

Other MATLAB functions use the values returned by these functions. If you change the
way that size and numel behave, ensure that the values returned make sense for the
intended use of your class.

Overload numArgumentsFromSubscript Instead of numel
If classes implement a numArgumentsFromSubscript method, MATLAB calls it instead
of numel to determine the number of elements returned by indexed expressions that
return comma-separated lists. For example, expressions such as:

A(1:2).Prop

Both subsref and subsasgn use numArgumentsFromSubscript:

• subsref — numArgumentsFromSubscript computes the number of expected
outputs (nargout) returned subsref.

• subsasgn — numArgumentsFromSubscript computes the number of expected
inputs (nargin) that MATLAB assigns as a result of a call to subsasgn.

Subclasses of built-in classes always return scalar objects as a result of subscripted
reference and always use scalar objects for subscripted assignment.

If you define a class in which nargout for subsref or nargin for subsasgn must be a
specific value, then overload numArgumentsFromSubscript to return that value.

See Also
numArgumentsFromSubscript

Related Examples
• “Modify nargout and nargin for Indexing Methods” on page 18-9

12 How to Build on Other Classes

12-82

Representing Hardware with Classes
In this section...
“Objective” on page 12-83
“Why Derive from int32” on page 12-83
“Implementation” on page 12-83
“Construct MuxCard Object” on page 12-84
“Call Methods of int32” on page 12-85

Objective
This example implements a class to represent an optical multiplex card. These cards
typically have several input ports and an output port. The MuxCard class represents the
ports by the port names and port data rates. The output rate of a multiplex card is the
sum of the input port data rates.

Why Derive from int32
The MuxCard class derives from the int32 class because 32–bit integers represent the
input port data rates. The MuxCard class inherits the methods of the int32 class, which
simplifies the implementation of this subclass. For example, numeric array indexing and
arithmetic operations work on MuxCard objects because the class inherits these
operations from the int32 class.

Implementation
Here is the definition of the MuxCard class. Notice that the input port rates initialize the
int32 portion of class.

classdef MuxCard < int32
 properties
 InPutNames
 OutPutName
 end

 properties (Dependent = true)
 OutPutRate

 Representing Hardware with Classes

12-83

 end

 methods
 function obj = MuxCard(inptnames, inptrates, outpname)
 obj = obj@int32(inptrates);
 obj.InPutNames = inptnames;
 obj.OutPutName = outpname;
 end

 function x = get.OutPutRate(obj)
 x = sum(obj);
 end

 function x = subsref(card, s)
 if strcmp(s(1).type,'.')
 base = subsref@int32(card, s(1));
 if isscalar(s)
 x = base;
 else
 x = subsref(base, s(2:end));
 end
 else
 x = subsref(int32(card), s);
 end
 end
 end
end

Construct MuxCard Object
The constructor takes three arguments:

• inptnames — Cell array of input port names
• inptrates — Vector of input port rates
• outpname — Name for the output port

omx = MuxCard({'inp1','inp2','inp3','inp4'},[3 12 12 48],'outp')

omx =

 1x4 MuxCard array with properties:

 InPutNames: {'inp1' 'inp2' 'inp3' 'inp4'}

12 How to Build on Other Classes

12-84

 OutPutName: 'outp'
 OutPutRate: 75

 int32 data:
 3 12 12 48

Call Methods of int32
Use a MuxCard object like an array of int32 values. For example, this indexing
statement accesses the data in the object to determine the names of the input ports that
have a rate of 12:

omx.InPutNames(omx==12)

ans =
 'inp2' 'inp3'

The indexing statement generates a logical array index:

omx == 12

ans =

 0 1 1 0

Indexing the MuxCard object accesses the int32 vector of input port rates:

omx(1:2)

ans =
 3 12

The OutPutRate property get access method uses sum to sum the output port rates:

omx.OutPutRate

ans =
 75

 Representing Hardware with Classes

12-85

See Also

Related Examples
• “Subclasses of Built-In Types with Properties” on page 12-68

12 How to Build on Other Classes

12-86

Determine Array Class
In this section...
“Query the Class Name” on page 12-87
“Test for Array Class” on page 12-87
“Test for Specific Types” on page 12-88
“Test for Most Derived Class” on page 12-89

Query the Class Name
To determine the class of an array, use the class function:

a = [2,5,7,11];
class(a)

ans =
double

str = 'Character array';
class(str)

ans =
char

Test for Array Class
The isa function enables you to test for a specific class or a category of numeric class
(numeric, float, integer):

a = [2,5,7,11];
isa(a,'double')

ans =
 1

Floating-point values (single and double precision values):

isa(a,'float')

ans =
 1

 Determine Array Class

12-87

Numeric values (floating-point and integer values):

isa(a,'numeric')

ans =
 1

isa Returns True for Subclasses

isa returns true for classes derived from the specified class. For example, the SubInt
class derives from the built-in type int16:

classdef SubInt < int16
 methods
 function obj = SubInt(data)
 if nargin == 0
 data = 0;
 end
 obj = obj@int16(data);
 end
 end
end

By definition, an instance of the SubInt class is also an instance of the int16 class:

aInt = SubInt;
isa(aInt,'int16')

ans =
 1

Using the integer category also returns true:

isa(aInt,'integer')

ans =
 1

Test for Specific Types
The class function returns the name of the most derived class of an object:

class(aInt)

12 How to Build on Other Classes

12-88

ans =
SubInt

Use the strcmp function with the class function to check for a specific class of an
object:

a = int16(7);
strcmp(class(a),'int16')

ans =
 1

Because the class function returns the class name as a char vector, the inheritance
does not affect the result of the comparison performed by strcmp:

aInt = SubInt;
strcmp(class(aInt),'int16')

ans =
 0

Test for Most Derived Class
If you define functions that require inputs that are:

• MATLAB built-in types
• Not subclasses of MATLAB built-in types

Use the following techniques to exclude subclasses of built-in types from the input
arguments.

• Define a cell array that contains the names of built-in types accepted by your function.
• Call class and strcmp to test for specific types in a MATLAB control statement.

Test an input argument:

if strcmp(class(inputArg),'single')
 % Call function
else
 inputArg = single(inputArg);
end

 Determine Array Class

12-89

Test for Category of Types

Suppose that you create a MEX-function, myMexFcn, that requires two numeric inputs
that must be of type double or single:

outArray = myMexFcn(a,b)

Define a cell array that contains the character arrays double and single:

floatTypes = {'double','single'};

% Test for proper types
if any(strcmp(class(a),floatTypes)) && ...
 any(strcmp(class(b),floatTypes))
 outArray = myMexFcn(a,b);
else
 % Try to convert inputs to avoid error
 ...
end

Another Test for Built-In Types

Use isobject to separate built-in types from subclasses of built-in types. The isobject
function returns false for instances of built-in types:

% Create a int16 array
a = int16([2,5,7,11]);
isobject(a)

ans =
 0

Determine if an array is one of the built-in integer types:

if isa(a,'integer') && ~isobject(a)
 % a is a built-in integer type
 ...
end

12 How to Build on Other Classes

12-90

Abstract Classes
In this section...
“Abstract Classes” on page 12-91
“Declare Classes as Abstract” on page 12-92
“Determine If a Class Is Abstract” on page 12-93
“Find Inherited Abstract Properties and Methods” on page 12-94

Abstract Classes
Abstract classes are useful for describing functionality that is common to a group of
classes, but requires unique implementations within each class.

Abstract Class Terminology

abstract class — A class that cannot be instantiated, but that defines class components
used by subclasses.

abstract members — Properties or methods declared in an abstract class, but
implemented in subclasses.

concrete members — Properties or methods that are fully implemented by a class.

concrete class — A class that can be instantiated. Concrete classes contain no abstract
members.

interface — An abstract class describing functionality that is common to a group of
classes, but that requires unique implementations within each class. The abstract class
defines the interface of each subclass without specifying the actual implementation.

An abstract class serves as a basis (that is, a superclass) for a group of related subclasses.
An abstract class can define abstract properties and methods that subclasses implement.
Each subclass can implement the concrete properties and methods in a way that supports
their specific requirements.

Implementing a Concrete Subclass

A subclass must implement all inherited abstract properties and methods to become a
concrete class. Otherwise, the subclass is itself an abstract class.

 Abstract Classes

12-91

MATLAB does not force subclasses to implement concrete methods with the same
signature or attributes.

Abstract classes:

• Can define properties and methods that are not abstract
• Pass on their concrete members through inheritance
• Do not need to define any abstract members

Declare Classes as Abstract
A class is abstract when it declares:

• The Abstract class attribute
• An abstract method
• An abstract property

If a subclass of an abstract class does not define concrete implementations for all
inherited abstract methods or properties, it is also abstract.

Abstract Class

Declare a class as abstract in the classdef statement:

classdef (Abstract) AbsClass
 ...
end

For classes that declare the Abstract class attribute:

• Concrete subclasses must redefine any properties or methods that are declared as
abstract.

• The abstract class does not need to define any abstract methods or properties.

When you define any abstract methods or properties, MATLAB automatically sets the
class Abstract attribute to true.

Abstract Methods

Define an abstract method:

12 How to Build on Other Classes

12-92

methods (Abstract)
 abstMethod(obj)
end

For methods that declare the Abstract method attribute:

• Do not use a function...end block to define an abstract method, use only the
method signature.

• Abstract methods have no implementation in the abstract class.
• Concrete subclasses are not required to support the same number of input and output

arguments and do not need to use the same argument names. However, subclasses
generally use the same signature when implementing their version of the method.

Abstract Properties

Define an abstract property:

properties (Abstract)
 AbsProp
end

For properties that declare the Abstract property attribute:

• Concrete subclasses must redefine abstract properties without the Abstract
attribute.

• Concrete subclasses must use the same values for the SetAccess and GetAccess
attributes as those attributes used in the abstract superclass.

• Abstract properties cannot define access methods and cannot specify initial values.
The subclass that defines the concrete property can create access methods and specify
initial values.

For more information on access methods, see “Property Access Methods” on page 8-52.

Determine If a Class Is Abstract
Determine if a class is abstract by querying the Abstract property of its meta.class
object. For example, the AbsClass defines two abstract methods:

classdef AbsClass
 methods(Abstract)
 result = absMethodOne(obj)

 Abstract Classes

12-93

 output = absMethodTwo(obj)
 end
end

Use the logical value of the meta.class Abstract property to determine if the class is
abstract:

mc = ?AbsClass;
if ~mc.Abstract
 % not an abstract class
end

Display Abstract Member Names

Use the meta.abstractDetails function to display the names of abstract properties or
methods and the names of the defining classes:

meta.abstractDetails('AbsClass');

Abstract methods for class AbsClass:
 absMethodTwo % defined in AbsClass
 absMethodOne % defined in AbsClass

Find Inherited Abstract Properties and Methods
The meta.abstractDetails function returns the names and defining class of any
inherited abstract properties or methods that you have not implemented in your subclass.
Use this function if you want the subclass to be concrete and must determine what
abstract members the subclass inherits.

For example, suppose that you create a subclass of the AbsClass class that is defined in
the previous section. In this case, the subclass implements only one of the abstract
methods defined by AbsClass.

classdef SubAbsClass < AbsClass
% Does not implement absMethodOne
% defined as abstract in AbsClass
 methods
 function out = absMethodTwo(obj)
 ...
 end
 end
end

12 How to Build on Other Classes

12-94

Determine if you implemented all inherited class members using
meta.abstractDetails:

meta.abstractDetails(?SubAbsClass)

Abstract methods for class SubAbsClass:
 absMethodOne % defined in AbsClass

The SubAbsClass class is abstract because it has not implemented the absMethodOne
method defined in AbsClass.

msub = ?SubAbsClass;
msub.Abstract

ans =

 1

If you implement both methods defined in AbsClass, the subclass becomes concrete.

See Also

Related Examples
• “Define an Interface Superclass” on page 12-96

 See Also

12-95

Define an Interface Superclass
In this section...
“Interfaces” on page 12-96
“Interface Class Implementing Graphs” on page 12-96

Interfaces
The properties and methods defined by a class form the interface that determines how
class users interact with objects of the class. When creating a group of related classes,
interfaces define a common interface to all these classes. The actual implementations of
the interface can differ from one class to another.

Consider a set of classes designed to represent various types of graphs. All classes must
implement a Data property to contain the data used to generate the graph. However, the
form of the data can differ considerably from one type of graph to another. Each class can
implement the Data property differently.

The same differences apply to methods. All classes can have a draw method that creates
the graph, but the implementation of this method changes with the type of graph.

The basic idea of an interface class is to specify the properties and methods that each
subclass must implement without defining the actual implementation. This approach
enables you to enforce a consistent interface to a group of related objects. As you add
more classes in the future, the interface remains the same.

Interface Class Implementing Graphs
This example creates an interface for classes used to represent specialized graphs. The
interface is an abstract class that defines properties and methods that the subclasses
must implement, but does not specify how to implement these components.

This approach enforces the use of a consistent interface while providing the necessary
flexibility to implement the internal workings of each specialized subclass differently.

In this example, a package folder contains the interface, derived subclasses, and a utility
function:

+graphics/GraphInterface.m % abstract interface class
+graphics/LineGraph.m % concrete subclass

12 How to Build on Other Classes

12-96

Interface Properties and Methods

The graph class specifies the following properties, which the subclasses must define:

• Primitive — Handle of the graphics object used to implement the specialized graph.
The class user has no need to access these objects directly so this property has
protected SetAccess and GetAccess.

• AxesHandle — Handle of the axes used for the graph. The specialized graph objects
can set axes object properties. This property has protected SetAccess and
GetAccess.

• Data — All subclasses of the GraphInterface class must store data. The type of data
varies and each subclass defines the storage mechanism. Subclass users can change
the data values so this property has public access rights.

The GraphInterface class names three abstract methods that subclasses must
implement. The GraphInterface class also suggests in comments that each subclass
constructor must accept the plot data and property name/property value pairs for all class
properties.

• Subclass constructor — Accept data and P/V pairs and return an object.
• draw — Used to create a drawing primitive and render a graph of the data according

to the type of graph implemented by the subclass.
• zoom — Implementation of a zoom method by changing the axes CameraViewAngle

property. The interface suggests the use of the camzoom function for consistency
among subclasses. The zoom buttons created by the addButtons static method use
this method as a callback.

• updateGraph — Method called by the set.Data method to update the plotted data
whenever the Data property changes.

Interface Guides Class Design

The package of classes that derive from the GraphInterface abstract class implement
the following behaviors:

• Creating an instance of a specialized GraphInterface object (subclass object)
without rendering the plot

• Specifying any or none of the object properties when you create a specialized
GraphInterface object

• Changing any object property automatically updates the currently displayed plot

 Define an Interface Superclass

12-97

• Allowing each specialized GraphInterface object to implement whatever additional
properties it requires to give class users control over those characteristics.

Define the Interface

The GraphInterface class is an abstract class that defines the methods and properties
used by the subclasses. Comments in the abstract class describe the intended
implementation:

classdef GraphInterface < handle
 % Abstract class for creating data graphs
 % Subclass constructor should accept
 % the data that is to be plotted and
 % property name/property value pairs
 properties (SetAccess = protected, GetAccess = protected)
 Primitive
 AxesHandle
 end
 properties
 Data
 end
 methods (Abstract)
 draw(obj)
 % Use a line, surface,
 % or patch graphics primitive
 zoom(obj,factor)
 % Change the CameraViewAngle
 % for 2D and 3D views
 % use camzoom for consistency
 updateGraph(obj)
 % Update the Data property and
 % update the drawing primitive
 end

 methods
 function set.Data(obj,newdata)
 obj.Data = newdata;
 updateGraph(obj)
 end
 function addButtons(gobj)
 hfig = get(gobj.AxesHandle,'Parent');
 uicontrol(hfig,'Style','pushbutton','String','Zoom Out',...
 'Callback',@(src,evnt)zoom(gobj,.5));
 uicontrol(hfig,'Style','pushbutton','String','Zoom In',...

12 How to Build on Other Classes

12-98

 'Callback',@(src,evnt)zoom(gobj,2),...
 'Position',[100 20 60 20]);
 end
 end
end

The GraphInterface class implements the property set method (set.Data) to monitor
changes to the Data property. An alternative is to define the Data property as Abstract
and enable the subclasses to determine whether to implement a set access method for
this property. The GraphInterface class defines a set access method that calls an
abstract method (updateGraph, which each subclass must implement). The
GraphInterface interface imposes a specific design on the whole package of classes,
without limiting flexibility.

Method to Work with All Subclasses

The addButtons method adds push buttons for the zoom methods, which each subclass
must implement. Using a method instead of an ordinary function enables addButtons to
access the protected class data (the axes handle). Use the object zoom method as the
push-button callback.

function addButtons(gobj)
 hfig = get(gobj.AxesHandle,'Parent');
 uicontrol(hfig,'Style','pushbutton',...
 'String','Zoom Out',...
 'Callback',@(src,evnt)zoom(gobj,.5));
 uicontrol(hfig,'Style','pushbutton',...
 'String','Zoom In',...
 'Callback',@(src,evnt)zoom(gobj,2),...
 'Position',[100 20 60 20]);
end

Derive a Concrete Class — LineGraph

This example defines only a single subclass used to represent a simple line graph. It
derives from GraphInterface, but provides implementations for the abstract methods
draw, zoom, updateGraph, and its own constructor. The base class GraphInterface
and subclass are all contained in a package (graphics), which you must use to reference
the class name:

classdef LineGraph < graphics.GraphInterface

 Define an Interface Superclass

12-99

Add Properties

The LineGraph class implements the interface defined in the GraphInterface class
and adds two additional properties—LineColor and LineType. This class defines initial
values for each property, so specifying property values in the constructor is optional. You
can create a LineGraph object with no data, but you cannot produce a graph from that
object.

properties
 LineColor = [0 0 0];
 LineType = '-';
end

The LineGraph Constructor

The constructor accepts a struct with x and y coordinate data, and property name/
property value pairs:

function gobj = LineGraph(data,varargin)
 if nargin > 0
 gobj.Data = data;
 if nargin > 2
 for k=1:2:length(varargin)
 gobj.(varargin{k}) = varargin{k+1};
 end
 end
 end
end

Implement the draw Method

The LineGraph draw method uses property values to create a line object. The
LineGraph class stores the line handle as protected class data. To support the use of no
input arguments for the class constructor, draw checks the Data property to determine if
it is empty before proceeding:

function gobj = draw(gobj)
 if isempty(gobj.Data)
 error('The LineGraph object contains no data')
 end
 h = line(gobj.Data.x,gobj.Data.y,...
 'Color',gobj.LineColor,...
 'LineStyle',gobj.LineType);
 gobj.Primitive = h;

12 How to Build on Other Classes

12-100

 gobj.AxesHandle = get(h,'Parent');
end

Implement the zoom Method

The LineGraph zoom method follows the comments in the GraphInterface class which
suggest using the camzoom function. camzoom provides a convenient interface to
zooming and operates correctly with the push buttons created by the addButtons
method.

Define the Property Set Methods

Property set methods provide a convenient way to execute code automatically when the
value of a property changes for the first time in a constructor. (See “Property Set
Methods” on page 8-58.) The linegraph class uses set methods to update the line
primitive data (which causes a redraw of the plot) whenever a property value changes.
The use of property set methods provides a way to update the data plot quickly without
requiring a call to the draw method. The draw method updates the plot by resetting all
values to match the current property values.

Three properties use set methods: LineColor, LineType, and Data. LineColor and
LineType are properties added by the LineGraph class and are specific to the line
primitive used by this class. Other subclasses can define different properties unique to
their specialization (for example, FaceColor).

The GraphInterface class implements the Data property set method. However, the
GraphInterface class requires each subclass to define a method called updateGraph,
which handles the update of plot data for the specific drawing primitive used.

The LineGraph Class

Here is the LineGraph class definition.

classdef LineGraph < graphics.GraphInterface
 properties
 LineColor = [0 0 0]
 LineType = '-'
 end

 methods
 function gobj = LineGraph(data,varargin)
 if nargin > 0
 gobj.Data = data;

 Define an Interface Superclass

12-101

 if nargin > 1
 for k=1:2:length(varargin)
 gobj.(varargin{k}) = varargin{k+1};
 end
 end
 end
 end

 function gobj = draw(gobj)
 if isempty(gobj.Data)
 error('The LineGraph object contains no data')
 end
 h = line(gobj.Data.x,gobj.Data.y,...
 'Color',gobj.LineColor,...
 'LineStyle',gobj.LineType);
 gobj.Primitive = h;
 gobj.AxesHandle = h.Parent;
 end

 function zoom(gobj,factor)
 camzoom(gobj.AxesHandle,factor)
 end

 function updateGraph(gobj)
 set(gobj.Primitive,...
 'XData',gobj.Data.x,...
 'YData',gobj.Data.y)
 end

 function set.LineColor(gobj,color)
 gobj.LineColor = color;
 set(gobj.Primitive,'Color',color)
 end

 function set.LineType(gobj,ls)
 gobj.LineType = ls;
 set(gobj.Primitive,'LineStyle',ls)
 end
 end
end

12 How to Build on Other Classes

12-102

Use the LineGraph Class

The LineGraph class defines the simple API specified by the graph base class and
implements its specialized type of graph:

d.x = 1:10;
d.y = rand(10,1);
lg = graphics.LineGraph(d,'LineColor','b','LineType',':');
lg.draw;
lg.addButtons;

Clicking the Zoom In button shows the zoom method providing the callback for the
button.

 Define an Interface Superclass

12-103

Changing properties updates the graph:

d.y = rand(10,1);
lg.Data = d;
lg.LineColor = [0.9,0.1,0.6];

Now click Zoom Out and see the new results:

12 How to Build on Other Classes

12-104

See Also

Related Examples
• “Abstract Classes” on page 12-91

 See Also

12-105

Saving and Loading Objects

• “Save and Load Process for Objects” on page 13-2
• “Reduce MAT-File Size for Saved Objects” on page 13-5
• “Save Object Data to Recreate Graphics Objects” on page 13-7
• “Improve Version Compatibility with Default Values” on page 13-10
• “Avoid Property Initialization Order Dependency” on page 13-12
• “Modify the Save and Load Process” on page 13-16
• “Basic saveobj and loadobj Pattern” on page 13-19
• “Maintain Class Compatibility” on page 13-23
• “Initialize Objects When Loading” on page 13-30
• “Save and Load Objects from Class Hierarchies” on page 13-33
• “Restore Listeners” on page 13-36

13

Save and Load Process for Objects
In this section...
“Save and Load Objects” on page 13-2
“What Information Is Saved?” on page 13-2
“How Is the Property Data Loaded?” on page 13-3
“Errors During Load” on page 13-3

Save and Load Objects
Use save and load to store and reload objects:

save filename object
load filename object

What Information Is Saved?
Saving objects in MAT-files saves:

• The full name of the object class, including any package qualifiers
• Values of dynamic properties
• All property default values defined by the class at the time the first object of the class

is saved to the MAT-file.
• The names and values of all properties, with the following exceptions:

• Properties are not saved if their current values are the same as the default values
specified in the class definition.

• Properties are not saved if their Transient, Constant, or Dependent attributes
set to true.

For a description of property attributes, see “Specify Property Attributes” on page 8-7

To save graphics objects, see savefig.

Note Do not use the pack command with objects that define events and listeners. The
pack command causes the destruction of any listeners defined for the objects in the

13 Saving and Loading Objects

13-2

workspace. For information on restoring listeners when saving objects, see “Restore
Listeners” on page 13-36.

How Is the Property Data Loaded?
When loading objects from MAT-files, the load function restores the object.

• load creates a new object.
• If the class ConstructOnLoad attribute is set to true, load calls the class

constructor with no arguments. Otherwise, load does not call the class constructor.
• load assigns the saved property values to the object properties. These assignments

result in calls to property set methods defined by the class (except in the case of
Dependent, Constant, or Transient properties, which are not saved or loaded).

• load assigns the default values saved in the MAT-file to properties whose values were
not saved because the properties were set to the default values when saved. These
assignments result in calls to property set methods defined by the class.

MATLAB calls property set methods to ensure that property values are still valid in cases
where the class definition has changed.

For information on property set methods, see “Property Set Methods” on page 8-58.

Errors During Load
If a new version of a class removes, renames, or changes the validation for a property,
load can generate an error when attempting to set the altered or deleted property.

When an error occurs while an object is being loaded from a file, MATLAB does one of the
following:

• If the class defines a loadobj method, MATLAB returns the saved values to the
loadobj method in a struct.

• If the class does not define a loadobj method, MATLAB silently ignores the errors.
The load function reconstitutes the object with property values that do not produce
an error.

In the struct passed to the loadobj method, the field names correspond to the
property names. The field values are the saved values for the corresponding properties.

 Save and Load Process for Objects

13-3

If the saved object derives from multiple superclasses that have private properties with
same name, the struct contains only the property value of the most direct superclass.

For information on how to implement saveobj and loadobj methods, see “Modify the
Save and Load Process” on page 13-16.

Changes to Property Validation

If a class definition changes property validation such that loaded property values are no
longer valid, MATLAB substitutes the currently defined default value for that property.
The class can define a loadobj method or converter methods to provide compatibility
among class versions.

For information on property validation, see “Validate Property Values” on page 8-26

See Also

Related Examples
• “Object Save and Load”

13 Saving and Loading Objects

13-4

Reduce MAT-File Size for Saved Objects

In this section...
“Default Values” on page 13-5
“Dependent Properties” on page 13-5
“Transient Properties” on page 13-5
“Avoid Saving Unwanted Variables” on page 13-6

Default Values
If a property often has the same value, define a default value for that property. When the
user saves the object to a MAT-file, MATLAB does not save the value of a property if the
current value equals the default value. MATLAB saves the default value on a per class
basis to avoid saving the value for every object.

For more information on how MATLAB evaluates default value expressions, see “Property
Default Values” on page 8-18.

Dependent Properties
Use a dependent property when the property value must be calculated at run time. A
dependent property is not saved in the MAT-file when you save an object. Instances of the
class do not allocate memory to hold a value for a dependent property.

Dependent is a property attribute (see “Property Attributes” on page 8-9 for a complete
list.)

Transient Properties
MATLAB does not store the values of transient properties. Transient properties can store
data in the object temporarily as an intermediate computation step or for faster retrieval.
Use transient properties when you easily can reproduce the data at run time or when the
data represents intermediate state that can be discarded.

 Reduce MAT-File Size for Saved Objects

13-5

Avoid Saving Unwanted Variables
Do not save variables that you do not want to load. Be sure that an object is still valid
before you save it. For example, if you save a deleted handle object, MATLAB loads it as a
deleted handle.

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-16
• “Object Save and Load”

13 Saving and Loading Objects

13-6

Save Object Data to Recreate Graphics Objects
In this section...
“What to Save” on page 13-7
“Regenerate When Loading” on page 13-7
“Change to a Stairstep Chart” on page 13-8

What to Save
Use transient properties to avoid saving what you can recreate when loading the object.
For example, an object can contain component parts that you can regenerate from data
that is saved. Regenerating these components also enables newer versions of the class to
create the components in a different way.

Regenerate When Loading
The YearlyRainfall class illustrates how to regenerate a graph when loading objects
of that class. YearlyRainfall objects contain a bar chart of the monthly rainfall for a
given location and year. The Location and Year properties are ordinary properties
whose values are saved when you save the object.

The Chart property contains the handle to the bar chart. When you save a bar chart,
MATLAB also saves the figure, axes, and Bar object and the data required to create these
graphics objects. The YearlyRainfall class design eliminates the need to save objects
that it can regenerate:

• The Chart property is Transient so the graphics objects are not saved.
• ChartData is a private property that provides storage for the Bar object data

(YData).
• The load function calls the set.ChartData method, passing it the saved bar chart

data.
• The setup method regenerates the bar chart and assigns the handle to the Chart

property. Both the class constructor and the set.ChartData method call setup.

classdef YearlyRainfall < handle
 properties
 Location

 Save Object Data to Recreate Graphics Objects

13-7

 Year
 end
 properties(Transient)
 Chart
 end
 properties(Access = private)
 ChartData
 end
 methods
 function rf = YearlyRainfall(data)
 setup(rf,data);
 end
 function set.ChartData(obj,V)
 setup(obj,V);
 end
 function V = get.ChartData(obj)
 V = obj.Chart.YData;
 end
 end
 methods(Access = private)
 function setup(rf,data)
 rf.Chart = bar(data);
 end
 end
end

Change to a Stairstep Chart
An advantage of the YearlyRainfall class design is the flexibility to modify the type of
graph used without making previously saved objects incompatible. Loading the object
recreates the graph based only on the data that is saved to the MAT-file.

For example, change the type of graph from a bar chart to a stair-step graph by modifying
the setup method:

methods(Access = private)
 function setup(rf,data)
 rf.Chart = stairs(data);
 end
end

13 Saving and Loading Objects

13-8

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-16
• “Object Save and Load”

 See Also

13-9

Improve Version Compatibility with Default Values
In this section...
“Version Compatibility” on page 13-10
“Using a Default Property Value” on page 13-10

Version Compatibility
Default property values can help you implement version compatibility for saved objects.
For example, suppose that you add a property to version 2 of your class. Having a default
value enables MATLAB to assign a value to the new property when loading a version 1
object.

Similarly, suppose version 2 of your class removes a property. If a version 2 object is
saved and loaded into version 1, your loadobj method can use the default value from
version 1.

Using a Default Property Value
The EmployeeInfo class shows how to use property default values as a way to enhance
compatibility among versions. Version 1 of the EmployeeInfo class defines three
properties — Name, JobTitle, and Department.

classdef EmployeeInfo
 properties
 Name
 JobTitle
 Department
 end
end

Version 2 of the EmployeeInfo class adds a property, Country, for the country name of
the employee location. The Country property has a default value of 'USA'.

classdef EmployeeInfo
 properties
 Name
 JobTitle
 Department
 Country = 'USA'

13 Saving and Loading Objects

13-10

 end
end

The character array, 'USA', is a good default value because:

• MATLAB assigns an empty double [] to properties that do not have default values
defined by the class. Empty double is not a valid value for the Country property.

• In version 1, all employees were in the USA. Therefore, any version 1 object loaded
into version 2 receives a valid value for the Country property.

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-16
• “Object Save and Load”

 See Also

13-11

Avoid Property Initialization Order Dependency

In this section...
“Control Property Loading” on page 13-12
“Dependent Property with Private Storage” on page 13-13
“Property Value Computed from Other Properties” on page 13-14

Control Property Loading
Problems can occur if property values depend on the order in which load sets the
property values.

Suppose that your class design is such that both of the following are true:

• A property set method changes another property value.
• A property value is computed from other property values.

Then the final state of an object after changing a series of property values can depend on
the order in which you set the properties. This order dependency can affect the result of
loading an object.

The load function sets property values in a particular order. This order can be different
from the order in which you set the properties in the saved object. As a result, the loaded
object can have different property values than the object had when it was saved.

Restore Nondependent Properties

If a property set function changes the values of other properties, then define the
Dependent attribute of that property as true. MATLAB does not save or restore
dependent property values.

Use nondependent properties for storing the values set by the dependent property. Then
the load function restores the nondependent properties with the same values that were
saved. The load function does not call the dependent property set method because there
is no value in the saved file for that property.

13 Saving and Loading Objects

13-12

Dependent Property with Private Storage
The Odometer class avoids order dependences when loading objects by controlling which
properties are restored when loading:

• The Units property is dependent. Its property set method sets the TotalDistance
property. Therefore load does not call the Units property set method.

• The load function restores TotalDistance to whatever value it had when you saved
the object.

classdef Odometer
 properties(Constant)
 ConversionFactor = 1.6
 end
 properties
 TotalDistance = 0
 end
 properties(Dependent)
 Units
 end
 properties(Access=private)
 PrivateUnits = 'mi'
 end
 methods
 function unit = get.Units(obj)
 unit = obj.PrivateUnits;
 end
 function obj = set.Units(obj,newUnits)
 % validate newUnits to be a char vector
 switch(newUnits)
 case 'mi'
 if strcmp(obj.PrivateUnits,'km')
 obj.TotalDistance = obj.TotalDistance / ...
 obj.ConversionFactor;
 obj.PrivateUnits = newUnits;
 end
 case 'km'
 if strcmp(obj.PrivateUnits,'mi')
 obj.TotalDistance = obj.TotalDistance * ...
 obj.ConversionFactor;
 obj.PrivateUnits = newUnits;
 end
 otherwise
 error('Odometer:InvalidUnits', ...

 Avoid Property Initialization Order Dependency

13-13

 'Units ''%s'' is not supported.', newUnits);
 end
 end
 end
end

Suppose that you create an instance of Odometer and set the following property values:

odObj = Odometer;
odObj.Units = 'km';
odObj.TotalDistance = 16;

When you save the object:

• ConversionFactor is not saved because it is a Constant property.
• TotalDistance is saved.
• Units is not saved because it is a Dependent property.
• PrivateUnits is saved and provides the storage for the current value of Units.

When you load the object:

• ConversionFactor is obtained from the class definition.
• TotalDistance is loaded.
• Units is not loaded, so its set method is not called.
• PrivateUnits is loaded from the saved object.

If the Units property was not Dependent, loading it calls its set method and causes the
TotalDistance property to be set again.

Property Value Computed from Other Properties
The Odometer2 class TripDistance property depends only on the values of two other
properties, TotalDistance and TripMarker.

The class avoids order dependence when initializing property values during the load
process by making the TripDistance property dependent. MATLAB does not save or
load a value for the TripDistance property, but does save and load values for the two
properties used to calculate TripDistance in its property get method.

classdef Odometer2
 properties

13 Saving and Loading Objects

13-14

 TotalDistance = 0
 TripMarker = 0
 end
 properties(Dependent)
 TripDistance
 end
 methods
 function distance = get.TripDistance(obj)
 distance = obj.TotalDistance - obj.TripMarker;
 end
 end
end

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-16
• “Object Save and Load”

 See Also

13-15

Modify the Save and Load Process

In this section...
“When to Modify the Save and Load Process” on page 13-16
“How to Modify the Save and Load Process” on page 13-16
“Implementing saveobj and loadobj Methods” on page 13-17
“Additional Considerations” on page 13-17

When to Modify the Save and Load Process
The primary reason for modifying the save and load process is to support backward and
forward compatibility of classes. Consider modifying the save and load process when you:

• Rename a class
• Remove properties
• Define a circular reference of handle objects where initialization order is important
• Must call the constructor with arguments and, therefore, cannot use

ConstructOnLoad

How to Modify the Save and Load Process
The most versatile technique for modifying the save and load process is to implement
loadobj, and if necessary, saveobj methods for your class. MATLAB executes these
methods when you call save or load on an object of the class.

The save function calls your class saveobj method before performing the save
operation. The save function then saves the value returned by the saveobj method. You
can use saveobj to return a modified object or a struct that contains property values.

load calls your class loadobj method after loading the object. The load function loads
the value returned by the loadobj method into the workspace. A loadobj method can
modify the object being loaded or can reconstruct an object from the data saved by the
class saveobj method.

13 Saving and Loading Objects

13-16

Implementing saveobj and loadobj Methods
Implement a saveobj method that modifies the object being saved, then implement a
loadobj method to return the object to the correct state when loading it.

Implement the loadobj method as a Static method because MATLAB can call the
loadobj method with a struct instead of an object of the class.

Implement the saveobj method as an ordinary method (that is, calling it requires an
instance of the class).

MATLAB saves the object class name so that load can determine which loadobj method
to call in cases where your saveobj method saves only the object data in a structure.
Therefore, the class must be accessible to MATLAB when you load the object.

Use a loadobj method when:

• The class definition has changed since the object was saved, requiring you to modify
the object before loading.

• A saveobj method modified the object during the save operation, possibly saving data
in a struct. Implement the loadobj method to reconstruct the object from the
output of saveobj.

Additional Considerations
When you decide to modify the default save and load process, keep the following points in
mind:

• If loading any property value from the MAT-file produces an error, load passes a
struct to loadobj. The struct field names correspond to the property names
extracted from the file.

• loadobj must always be able to accept a struct as input and return an object, even
if there is no saveobj or saveobj does not return a struct.

• If saveobj returns a struct, then load always passes that struct to loadobj.
• Subclass objects inherit superclass loadobj and saveobj methods. Therefore, if you

do not implement a loadobj or saveobj method in the subclass, MATLAB calls only
the inherited methods.

If a superclass implements a loadobj or saveobj method, then a subclass can also
implement a loadobj or saveobj method that calls the superclass methods. For

 Modify the Save and Load Process

13-17

more information, see “Save and Load Objects from Class Hierarchies” on page 13-
33.

• The load function does not call the constructor by default. For more information, see
“Initialize Objects When Loading” on page 13-30.

See Also

Related Examples
• “Basic saveobj and loadobj Pattern” on page 13-19
• “Object Save and Load”

13 Saving and Loading Objects

13-18

Basic saveobj and loadobj Pattern

In this section...
“Using saveobj and loadobj” on page 13-19
“Handle Load Problems” on page 13-20

Using saveobj and loadobj
Depending on the requirements of your class, there are various ways you can use
saveobj and loadobj methods. This pattern is a flexible way to solve problems that you
cannot address by simpler means.

The basic process is:

• Use saveobj to save all essential data in a struct and do not save the object.
• Use loadobj to reconstruct the object from the saved data.

This approach is not useful in cases where you cannot save property values in a struct
field. Data that you cannot save, such as a file identifier, you can possibly regenerate in
the loadobj method.

saveobj

For this pattern, define saveobj as an ordinary method that accepts an object of the
class and returns a struct.

• Copy each property value to a structure field of the same name.
• You can save only the data that is necessary to rebuild the object. Avoid saving whole

objects hierarchies, such as those created by graphs.

methods
 function s = saveobj(obj)
 s.Prop1 = obj.Prop1;
 s.Prop2 = obj.Prop2
 s.Data = obj.GraphHandle.YData;
 end
end

 Basic saveobj and loadobj Pattern

13-19

loadobj

Define loadobj as a static method. Create an object by calling the class constructor.
Then assign values to properties from the struct passed to loadobj. Use the data to
regenerate properties that were not saved.

methods(Static)
 function obj = loadobj(s)
 if isstruct(s)
 newObj = ClassConstructor;
 newObj.Prop1 = s.Prop1;
 newObj.Prop2 = s.Prop2
 newObj.GraphHandle = plot(s.Data);
 obj = newObj;
 else
 obj = s;
 end
 end
end

If the load function encounters an error, load passes loadobj a struct instead of an
object. Your loadobj method must always be able to handle a struct as the input
argument. The input to loadobj is always a scalar.

Handle Load Problems
loadobj can handle a struct input even if you are not using a saveobj method.

The GraphExpression class creates a graph of a MATLAB expression over a specified
range of data. GraphExpression uses its loadobj method to regenerate the graph,
which is not saved with the object.

classdef GraphExpression
 properties
 FuncHandle
 Range
 end
 methods
 function obj = GraphExpression(fh,rg)
 obj.FuncHandle = fh;
 obj.Range = rg;
 makeGraph(obj)
 end

13 Saving and Loading Objects

13-20

 function makeGraph(obj)
 rg = obj.Range;
 x = min(rg):max(rg);
 data = obj.FuncHandle(x);
 plot(data)
 end
 end
 methods (Static)
 function obj = loadobj(s)
 if isstruct(s)
 fh = s.FuncHandle;
 rg = s.Range;
 obj = GraphExpression(fh,rg);
 else
 makeGraph(s);
 obj = s;
 end
 end
 end
end

Save and Load Object

Create an object with an anonymous function and a range of data as inputs:

h = GraphExpression(@(x)x.^4,[1:25])

h =

 GraphExpression with properties:

 FuncHandle: @(x)x.^4
 Range: [1x25 double]

Save the GraphExpression object and close the graph:

save myFile h
close

Load the object. MATLAB recreates the graph:

load myFile h

If the load function cannot create the object and passes a struct to loadobj, loadobj
attempts to create an object with the data supplied.

 Basic saveobj and loadobj Pattern

13-21

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-16
• “Object Save and Load”

13 Saving and Loading Objects

13-22

Maintain Class Compatibility
In this section...
“Rename Property” on page 13-23
“Update Property When Loading” on page 13-25
“Maintaining Compatible Versions of a Class” on page 13-26
“Version 2 of the PhoneBookEntry Class” on page 13-27

Rename Property
Suppose that you want to rename a property, but do not want to cause errors in existing
code that refer to the original property. For example, rename a public property called
OfficeNumber to Location. Here is the original class definition:

classdef EmployeeList
 properties
 Name
 Email
 OfficeNumber % Rename as Location
 end
end

Use of a hidden dependent property can achieve the desired results.

• In the class definition, set the OfficeNumber property attributes to Dependent and
Hidden.

• Create a property set method for OfficeNumber that sets the value of the Location
property.

• Create a property get method for OfficeNumber that returns the value of the
Location location property.

While the OfficeNumber property is hidden, existing code can continue to access this
property. The Hidden attribute does not affect access.

Because OfficeNumber is dependent, there is no redundancy in storage required by
adding the new property. MATLAB does not store or save dependent properties.

Here is the updated class definition.

 Maintain Class Compatibility

13-23

classdef EmployeeList
 properties
 Name
 Email
 Location
 end
 properties (Dependent, Hidden)
 OfficeNumber
 end
 methods
 function obj = set.OfficeNumber(obj,val)
 obj.Location = val;
 end
 function val = get.OfficeNumber(obj)
 val = obj.Location;
 end
 end
end

Saving and Loading EmployeeList Objects

You can load old instances of the EmployeeList class in the presence of the new class
version. Code that refers to the OfficeNumber property continues to work.

Forward and Backward Compatibility

Suppose that you want to be able to load new EmployeeList objects into systems that
still have the old version of the EmployeeList class. To achieve compatibility with old
and new versions:

• Define the OfficeNumber property as Hidden, but not Dependent.
• Define the Location property as Dependent.

In this version of the EmployeeList class, the OfficeNumber property saves the value
used by the Location property. Loading an object assigns values of the three original
properties (Name, Email, and OfficeNumber), but does not assign a value to the new
Location property. The lack of the Location property in the old class definition is not a
problem.

classdef EmployeeList
 properties
 Name
 Email

13 Saving and Loading Objects

13-24

 end
 properties (Dependent)
 Location
 end
 properties (Hidden)
 OfficeNumber
 end
 methods
 function obj = set.Location(obj,val)
 obj.OfficeNumber = val;
 end
 function val = get.Location(obj)
 val = obj.OfficeNumber;
 end
 end
end

Update Property When Loading
Suppose that you modify a class so that a property value changes in its form or type.
Previously saved objects of the class must be updated when loaded to have a conforming
property value.

Consider a class that has an AccountID property. Suppose that all account numbers must
migrate from eight-digit numeric values to 12-element character arrays.

You can accommodate this change by implementing a loadobj method.

The loadobj method:

• Tests to determine if the load function passed a struct or object. All loadobj
methods must handle both struct and object when there is an error in load.

• Tests to determine if the AccountID number contains eight digits. If so, change it to a
12-element character array by calling the paddAccID method.

After updating the AccountID property, loadobj returns a MyAccount object that
MATLAB loads into the workspace.

classdef MyAccount
 properties
 AccountID
 end
 methods

 Maintain Class Compatibility

13-25

 function obj = padAccID(obj)
 ac = obj.AccountID;
 acstr = num2str(ac);
 if length(acstr) < 12
 obj.AccountID = [acstr,repmat('0',1,12-length(acstr))];
 end
 end
 end
 methods (Static)
 function obj = loadobj(a)
 if isstruct(a)
 obj = MyAccount;
 obj.AccountID = a.AccountID;
 obj = padAccID(obj);
 elseif isa(a,'MyAccount')
 obj = padAccID(a);
 end
 end
 end
end

You do not need to implement a saveobj method. You are using loadobj only to ensure
that older saved objects are brought up to date while loading.

Maintaining Compatible Versions of a Class
The PhoneBookEntry class uses a combination of techniques to maintain compatibility
with new versions of the class.

Suppose that you define a class to represent an entry in a phone book. The
PhoneBookEntry class defines three properties: Name, Address, and PhoneNumber.

classdef PhoneBookEntry
 properties
 Name
 Address
 PhoneNumber
 end
end

However, in future releases, the class adds more properties. To provide flexibility,
PhoneBookEntry saves property data in a struct using its saveobj method.

13 Saving and Loading Objects

13-26

methods
 function s = saveobj(obj)
 s.Name = obj.Name;
 s.Address = obj.Address;
 s.PhoneNumber = obj.PhoneNumber;
 end
end

The loadobj method creates the PhoneBookEntry object, which is then loaded into the
workspace.

methods (Static)
 function obj = loadobj(s)
 if isstruct(s)
 newObj = PhoneBookEntry;
 newObj.Name = s.Name;
 newObj.Address = s.Address;
 newObj.PhoneNumber = s.PhoneNumber;
 obj = newObj;
 else
 obj = s;
 end
 end
end

Version 2 of the PhoneBookEntry Class
In version 2 of the PhoneBookEntry class, you split the Address property into
StreetAddress, City, State, and ZipCode properties.

With these changes, you could not load a version 2 object in a previous release. However,
version 2 employs several techniques to enable compatibility:

• Preserve the Address property (which is used in version 1) as a Dependent property
with private SetAccess.

• Define an Address property get method (get.Address) to build a char vector that is
compatible with the version 2 Address property.

• The saveobj method invokes the get.Address method to assign the object data to a
struct that is compatible with previous versions. The struct continues to have only
an Address field built from the data in the new StreetAddress, City, State, and
ZipCode properties.

 Maintain Class Compatibility

13-27

• When the loadobj method sets the Address property, it invokes the property set
method (set.Address), which extracts the substrings required by the
StreetAddress, City, State, and ZipCode properties.

• The Transient (not saved) property SaveInOldFormat enables you to specify
whether to save the version 2 object as a struct or an object.

classdef PhoneBookEntry
 properties
 Name
 StreetAddress
 City
 State
 ZipCode
 PhoneNumber
 end
 properties (Constant)
 Sep = ', '
 end
 properties (Dependent, SetAccess=private)
 Address
 end
 properties (Transient)
 SaveInOldFormat = false;
 end
 methods (Static)
 function obj = loadobj(s)
 if isstruct(s)
 obj = PhoneBookEntry;
 obj.Name = s.Name;
 obj.Address = s.Address;
 obj.PhoneNumber = s.PhoneNumber;
 else
 obj = s;
 end
 end
 end
 methods
 function address = get.Address(obj)
 address = [obj.StreetAddress,obj.Sep,obj.City,obj.Sep,...
 obj.State,obj.Sep,obj.ZipCode];
 end
 function obj = set.Address(obj,address)
 addressItems = regexp(address,obj.Sep,'split');
 if length(addressItems) == 4

13 Saving and Loading Objects

13-28

 obj.StreetAddress = addressItems{1};
 obj.City = addressItems{2};
 obj.State = addressItems{3};
 obj.ZipCode = addressItems{4};
 else
 error('PhoneBookEntry:InvalidAddressFormat', ...
 'Invalid address format.');
 end
 end
 function s = saveobj(obj)
 if obj.SaveInOldFormat
 s.Name = obj.Name;
 s.Address = obj.Address;
 s.PhoneNumber = obj.PhoneNumber;
 end
 end
 end
end

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-16
• “Object Save and Load”

 See Also

13-29

Initialize Objects When Loading
In this section...
“Calling Constructor When Loading Objects” on page 13-30
“Initializing Objects in the loadobj Method” on page 13-30

Calling Constructor When Loading Objects
MATLAB does not call the class constructor when loading an object from a MAT-file.
However, if you set the ConstructOnLoad class attribute to true, load does call the
constructor with no arguments.

Enable ConstructOnLoad when you do not want to implement a loadobj method, but
must perform some actions at construction time. For example, enable ConstructOnLoad
when you are registering listeners for another object. Ensure that MATLAB can call the
class constructor with no arguments without generating an error.

Attributes set on superclasses are not inherited by subclasses. Therefore, MATLAB does
not use the value of the superclass ConstructOnLoad attribute when loading objects. If
you want MATLAB to call the class constructor, set the ConstructOnLoad attribute in
your specific subclass.

If the constructor requires input arguments, use a loadobj method.

Initializing Objects in the loadobj Method
Use a loadobj method when the class constructor requires input arguments to perform
object initialization.

The LabResults class shares the constructor object initialization steps with the
loadobj method by performing these steps in the assignStatus method.

Objects of the LabResults class:

• Hold values for the results of tests.
• Assign a status for each value based on a set of criteria.

classdef LabResult
 properties

13 Saving and Loading Objects

13-30

 CurrentValue
 end
 properties (Transient)
 Status
 end
 methods
 function obj = LabResult(cv)
 obj.CurrentValue = cv;
 obj = assignStatus(obj);
 end
 function obj = assignStatus(obj)
 v = obj.CurrentValue;
 if v < 10
 obj.Status = 'Too low';
 elseif v >= 10 && v < 100
 obj.Status = 'In range';
 else
 obj.Status = 'Too high';
 end
 end
 end
 methods (Static)
 function obj = loadobj(s)
 if isstruct(s)
 cv = s.CurrentValue;
 obj = LabResults(cv);
 else
 obj = assignStatus(s);
 end
 end
 end
end

The LabResults class uses loadobj to determine the status of a given test value. This
approach provides a way to:

• Modify the criteria for determining status
• Ensure that objects always use the current criteria

You do not need to implement a saveobj method.

 Initialize Objects When Loading

13-31

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-16
• “Object Save and Load”

13 Saving and Loading Objects

13-32

Save and Load Objects from Class Hierarchies
In this section...
“Saving and Loading Subclass Objects” on page 13-33
“Reconstruct the Subclass Object from a Saved struct” on page 13-33

Saving and Loading Subclass Objects
If the most specific class of an object does not define a loadobj or saveobj method, this
class can inherit loadobj or saveobj methods from a superclass.

If any class in the hierarchy defines saveobj or loadobj methods:

• Define saveobj for all classes in the hierarchy.
• Call superclass saveobj methods from the subclass saveobj method because the

save function calls only the most specific saveobj method.
• The subclass loadobj method can call the superclass loadobj, or other methods as

required, to assign values to their properties.

Reconstruct the Subclass Object from a Saved struct
Suppose that you want to save a subclass object by first converting its property data to a
struct in the class saveobj method. Then you reconstruct the object when loaded using
its loadobj method. This action requires that:

• Superclasses implement saveobj methods to save their property data in the struct.
• The subclass saveobj method calls each superclass saveobj method and returns the

completed struct to the save function. Then the save function writes the struct to
the MAT-file.

• The subclass loadobj method creates a subclass object and calls superclass methods
to assign their property values in the subclass object.

• The subclass loadobj method returns the reconstructed object to the load function,
which loads the object into the workspace.

The following superclass (MySuper) and subclass (MySub) definitions show how to code
these methods.

 Save and Load Objects from Class Hierarchies

13-33

• The MySuper class defines a loadobj method to enable an object of this class to be
loaded directly.

• The subclass loadobj method calls a method named reload after it constructs the
subclass object.

• reload first calls the superclass reload method to assign superclass property values
and then assigns the subclass property value.

classdef MySuper
 properties
 X
 Y
 end
 methods
 function S = saveobj(obj)
 S.PointX = obj.X;
 S.PointY = obj.Y;
 end
 function obj = reload(obj,S)
 obj.X = S.PointX;
 obj.Y = S.PointY;
 end
 end
 methods (Static)
 function obj = loadobj(S)
 if isstruct(s)
 obj = MySuper;
 obj = reload(obj,S);
 end
 end
 end
end

Call the superclass saveobj and loadobj methods from the subclass saveobj and
loadobj methods.

classdef MySub < MySuper
 properties
 Z
 end
 methods
 function S = saveobj(obj)
 S = saveobj@MySuper(obj);
 S.PointZ = obj.Z;

13 Saving and Loading Objects

13-34

 end
 function obj = reload(obj,S)
 obj = reload@MySuper(obj,S);
 obj.Z = S.PointZ;
 end
 end
 methods (Static)
 function obj = loadobj(S)
 if isstruct(s)
 obj = MySub;
 obj = reload(obj,S);
 end
 end
 end
end

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-16
• “Object Save and Load”

 See Also

13-35

Restore Listeners
In this section...
“Create Listener with loadobj” on page 13-36
“Use Transient Property to Load Listener” on page 13-36
“Using the BankAccount and AccountManager Classes” on page 13-38

Create Listener with loadobj
Suppose that you create a property listener and want to be able to save and restore the
event source and the listener. One approach is to create a listener from the loadobj
method.

Use Transient Property to Load Listener
The BankAccount class stores the account balance and an account status. A PostSet
listener attached to the AccountBalance property controls the account status.

When the AccountBalance property value changes, the listener callback determines the
account status. Important points include:

• The BankAccount class defines the AccountManagerListener property to contain
the listener handle. This property enables the loadobj method to create a listener
and return a reference to it in the object that is loaded into the workspace.

• The AccountManagerListener property is Transient because there is no need to
store the listener handle with a BankAccount object. Create a listener that is
attached to the new BankAccount object created during the load process.

• The AccountBalance listener sets the AccountStatus.
• Only the AccountManager class can access AccountStatus property.

classdef BankAccount < handle
 properties (SetObservable, AbortSet)
 AccountBalance
 end
 properties (Transient)
 AccountManagerListener
 end
 properties (Access = ?AccountManager)

13 Saving and Loading Objects

13-36

 AccountStatus
 end
 methods
 function obj = BankAccount(initialBalance)
 obj.AccountBalance = initialBalance;
 obj.AccountStatus = 'New Account';
 obj.AccountManagerListener = AccountManager.addAccount(obj);
 end
 end
 methods (Static)
 function obj = loadobj(obj)
 if isstruct(obj) % Handle error
 initialBalance = obj.AccountBalance;
 obj = BankAccount(initialBalance);
 else
 obj.AccountManagerListener = AccountManager.addAccount(obj);
 end
 end
 end
end

Assume the AccountManager class provides services for various types of accounts. For
the BankAccount class, the AccountManager class defines two Static methods:

• assignStatus — Callback for the AccountBalance property PostSet listener. This
method determines the value of the BankAccount AccountStatus property.

• addAccount — Creates the AccountBalance property PostSet listener. The
BankAccount constructor and loadobj methods call this method.

classdef AccountManager
 methods (Static)
 function assignStatus(BA,~)
 if BA.AccountBalance < 0 && BA.AccountBalance >= -100
 BA.AccountStatus = 'overdrawn';
 elseif BA.AccountBalance < -100
 BA.AccountStatus = 'frozen';
 else
 BA.AccountStatus = 'open';
 end
 end
 function lh = addAccount(BA)
 lh = addlistener(BA,'AccountBalance','PostSet', ...
 @(src,evt)AccountManager.assignStatus(BA));
 end

 Restore Listeners

13-37

 end
end

Using the BankAccount and AccountManager Classes
Create an instance of the BankAccount class.

ba = BankAccount(100)

ba =

 BankAccount with properties:

 AccountBalance: 100
 AccountManagerListener: [1x1 event.proplistener]
 AccountStatus: 'New Account'

Now set an account value to confirm that the AccountManager sets AccountStatus
appropriately:

ba.AccountBalance = -10;
ba.AccountStatus

ans =

overdrawn

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-16
• “Property Attributes” on page 8-9
• “Listen for Changes to Property Values” on page 11-40
• “Object Save and Load”

13 Saving and Loading Objects

13-38

Enumerations

• “Named Values” on page 14-2
• “Define Enumeration Classes” on page 14-5
• “Refer to Enumerations” on page 14-11
• “Enumerations for Property Values” on page 14-17
• “Operations on Enumerations” on page 14-19
• “Enumeration Class Restrictions” on page 14-27
• “Enumerations Derived from Built-In Types” on page 14-28
• “Mutable Handle vs. Immutable Value Enumeration Members” on page 14-34
• “Enumerations That Encapsulate Data” on page 14-41
• “Save and Load Enumerations” on page 14-45

14

Named Values
In this section...
“Kinds of Predefined Names” on page 14-2
“Techniques for Defining Enumerations” on page 14-3

Kinds of Predefined Names
MATLAB supports two kinds of predefined names:

• Constant properties
• Enumerations

Constant Properties

Use constant properties when you want a collection of related constant values whose
values can belong to different types (numeric values, character strings, and so on). Define
properties with constant values by setting the property Constant attribute. Reference
constant properties by name whenever you need access to that particular value.

See “Define Class Properties with Constant Values” on page 15-2 for more information.

Enumerations

Use enumerations when you want to create a fixed set of names representing a single
type of value. Use this new type in multiple places without redefining it for each class.

You can derive enumeration classes from other classes to inherit the operations of the
superclass. For example, if you define an enumeration class that subclasses a MATLAB
numeric class like double or int32, the enumeration class inherits all the mathematical
and relational operations that MATLAB defines for those classes.

Using enumerations instead of character strings to represent a value, such as colors
('red'), can result in more readable code because:

• You can compare enumeration members with == instead of using strcmp
• Enumerations maintain type information, char vectors do not. For example, passing a

char vector 'red' to functions means that every function must interpret what 'red'
means. If you define red as an enumeration, the actual value of 'red' can change

14 Enumerations

14-2

(from [1 0 0] to [.93 .14 .14], for example) without updating every function that
accepts colors, as you would if you defined the color as the char vector 'red'.

Define enumerations by creating an enumeration block in the class definition.

See “Define Enumeration Classes” on page 14-5 for more information.

Techniques for Defining Enumerations
Enumerations enable you to define names that represent entities useful to your
application, without using numeric values or character strings. All enumerations support
equality and inequality operations. Therefore, switch, if, and several comparison
functions like isequal and ismember work with enumeration members.

You can define enumeration classes in ways that are most useful to your application, as
described in the following sections.

Simple Enumerated Names

Simple enumeration classes have no superclasses and no properties. These classes define
a set of related names that have no underlying values associated with them. Use this kind
of enumeration when you want descriptive names, but your application does not require
specific information associated with the name.

See the WeekDays class in the “Enumeration Class” on page 14-5 and the “Define
Methods in Enumeration Classes” on page 14-7 sections.

Enumerations with Built-In Class Behaviors

Enumeration classes that subclass MATLAB built-in classes inherit most of the behaviors
of those classes. For example, an enumeration class derived from the double class
inherits the mathematical, relational, and set operations that work with variables of the
class.

Enumerations do not support the colon (:) operator, even if the superclass does.

Enumerations with Properties for Member Data

Enumeration classes that do not subclass MATLAB built-in numeric and logical classes
can define properties. These classes can define constructors that set each member's
unique property values.

 Named Values

14-3

The constructor can save input arguments in property values. For example, a Color class
can specify a Red enumeration member color with three (Red, Green, Blue) values:

enumeration
 Red (1,0,0)
end

See Also

Related Examples
• “Enumeration Class Restrictions” on page 14-27
• “Enumerations Derived from Built-In Types” on page 14-28
• “Enumerations That Encapsulate Data” on page 14-41

14 Enumerations

14-4

Define Enumeration Classes
In this section...
“Enumeration Class” on page 14-5
“Construct an Enumeration Member” on page 14-5
“Convert to Superclass Value” on page 14-6
“Define Methods in Enumeration Classes” on page 14-7
“Define Properties in Enumeration Classes” on page 14-7
“Enumeration Class Constructor Calling Sequence” on page 14-8

Enumeration Class
Create an enumeration class by adding an enumeration block to a class definition. For
example, the WeekDays class enumerates a set of days of the week.

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
end

To execute the MATLAB code in the following sections, place the WeekDays class
definition in a .m file on your path.

Construct an Enumeration Member
Refer to an enumeration member using the class name and the member name:

ClassName.MemberName

For example, assign the enumeration member WeekDays.Tuesday to the variable
today:

today = WeekDays.Tuesday;

today is a variable of class WeekDays:

whos

 Define Enumeration Classes

14-5

 Name Size Bytes Class Attributes

 today 1x1 104 WeekDays

today

today =

 Tuesday

Convert to Superclass Value
If an enumeration class specifies a superclass, convert an enumeration object to the
superclass by passing the object to the superclass constructor. However, the superclass
constructor must be able to accept its own class as input and return an instance of the
superclass. MATLAB built-in numeric classes, such as uint32, allow this conversion.

For example, the Bearing class derives from the uint32 built-in class:

classdef Bearing < uint32
 enumeration
 North (0)
 East (90)
 South (180)
 West (270)
 end
end

Assign the Bearing.East member to the variable a:

a = Bearing.East;

Pass a to the superclass constructor and return a uint32 value:

b = uint32(a);
whos

 Name Size Bytes Class Attributes

 a 1x1 60 Bearing
 b 1x1 4 uint32

The uint32 constructor accepts an object of the subclass Bearing and returns an object
of class uint32.

14 Enumerations

14-6

Define Methods in Enumeration Classes
Define methods in an enumeration class like any MATLAB class. For example, here is the
WeekDays class with a method called isMeetingDay added:

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
 methods
 function tf = isMeetingDay(obj)
 tf = ~(WeekDays.Tuesday == obj);
 end
 end
end

Call isMeetingDay with an instance of the WeekDays class:

today = WeekDays.Tuesday;
today.isMeetingDay

ans =

 0

Use the enumeration member directly as input to the method:

isMeetingDay(WeekDays.Wednesday)

ans =

 1

Define Properties in Enumeration Classes
Add properties to an enumeration class when you must store data related to the
enumeration members. Set the property values in the class constructor. For example, the
SyntaxColors class defines three properties whose values the constructor assigns to the
values of the input arguments when you reference a class member.

classdef SyntaxColors
 properties
 R
 G

 Define Enumeration Classes

14-7

 B
 end
 methods
 function c = SyntaxColors(r, g, b)
 c.R = r; c.G = g; c.B = b;
 end
 end
 enumeration
 Error (1, 0, 0)
 Comment (0, 1, 0)
 Keyword (0, 0, 1)
 String (1, 0, 1)
 end
end

When you refer to an enumeration member, the constructor initializes the property
values:

e = SyntaxColors.Error;
e.R

ans =

 1

Because SyntaxColors is a value class (it does not derive from handle), only the class
constructor can set property values:

e.R = 0

You cannot set the read-only property 'R' of SyntaxColors.

For more information on enumeration classes that define properties, see “Mutable Handle
vs. Immutable Value Enumeration Members” on page 14-34.

Enumeration Class Constructor Calling Sequence
Each statement in an enumeration block is the name of an enumeration member,
optionally followed by an argument list. If the enumeration class defines a constructor,
MATLAB calls the constructor to create the enumerated instances.

MATLAB provides a default constructor for all enumeration classes that do not explicitly
define a constructor. The default constructor creates an instance of the enumeration
class:

14 Enumerations

14-8

• Using no input arguments, if the enumeration member defines no input arguments
• Using the input arguments defined in the enumeration class for that member

For example, the input arguments for the Bool class are 0 for Bool.No and 1 for
Bool.Yes.

classdef Bool < logical
 enumeration
 No (0)
 Yes (1)
 end
end

The values of 0 and 1 are of class logical because the default constructor passes the
argument to the first superclass. That is, this statement:

n = Bool.No;

Results in a call to logical that is equivalent to the following statement in a constructor:

function obj = Bool(val)
 obj@logical(val)
end

MATLAB passes the member argument only to the first superclass. For example, suppose
Bool derived from another class:

classdef Bool < logical & MyBool
 enumeration
 No (0)
 Yes (1)
 end
end

The MyBool class can add some specialized behavior:

classdef MyBool
 methods
 function boolValues = testBools(obj)
 ...
 end
 end
end

The default Bool constructor behaves as if defined like this function:

 Define Enumeration Classes

14-9

• Argument passed to first superclass constructor
• No arguments passed to subsequent constructors

function obj = Bool(val)
 obj@logical(val)
 obj@MyBool
end

See Also

Related Examples
• “Refer to Enumerations” on page 14-11
• “Operations on Enumerations” on page 14-19

14 Enumerations

14-10

Refer to Enumerations
In this section...
“Instances of Enumeration Classes” on page 14-11
“Conversion of Characters to Enumerations” on page 14-13
“Enumeration Arrays” on page 14-15

Instances of Enumeration Classes
Enumeration members are instances of the enumeration class. You can assign
enumeration members to variables and form arrays of enumeration members. If an
enumeration class derives from a superclass, you can substitute an enumeration member
for an instance of the superclass.

The WeekDays class defines enumeration members for five days of the week.

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
end

Create objects of the WeekDays class representing specific days.

today = WeekDays.Monday;
tomorrow = WeekDays.Tuesday;

The variables today and tomorrow are objects of the WeekDays class.

The PPM class defines three enumeration members. Each member has an associated
numeric value derived from the class superclass.

classdef PPM < double
 enumeration
 High (1000)
 Medium (100)
 Low (10)
 end
end

Assign an enumeration member to a variable.

 Refer to Enumerations

14-11

level = PPM.High;

When you substitute enumeration members for instances of the superclass, MATLAB
coerces the enumeration member to the superclass. For example, add an enumeration
member of the PPM class with a numeric value.

levelNew = level + 100

levelNew =

 1100

The result is of class double.

whos

 Name Size Bytes Class Attributes

 level 1x1 108 PPM
 levelNew 1x1 8 double

You can substitute superclass values for enumeration members when the values
correspond. For example, pass one of the numeric values defined in the enumeration class
to the PPMSwitch function.

function PPMSwitch(ppm)
 switch ppm
 case PPM.Low
 disp Low
 case PPM.Medium
 disp Medium
 case PPM.High
 disp High
 end
end

PPMSwitch(100)

Medium

You can also use an enumeration member directly:

PPMSwitch(PPM.Medium)

Medium

14 Enumerations

14-12

For information on operations you can perform on enumeration class instances, see
“Operations on Enumerations” on page 14-19.

Conversion of Characters to Enumerations
Enumeration classes can convert char vectors to enumeration members when the char
vector represents an enumeration member defined by the class. This conversion enables
you to pass a valid char vector or a cell array of char vectors when enumerations are
expected.

Use a char vector instead of a direct reference to an enumeration member when you
want to use a simple character strings to specify an enumeration member. However,
specifying an enumeration member directly eliminates the conversion from char to
enumeration.

Enumeration classes provide a converter function using the constructor syntax.

today = WeekDays('Tuesday');

Because the char vector 'Tuesday' matches the enumeration member
WeekDays.Tuesday, the Weekdays char method can perform the conversion.

class(today)

ans =

WeekDays

Create an enumeration array using the WeekDay class constructor and a cell array of
char vectors.

wd = WeekDays({'Monday','Wednesday','Friday'})

wd =

 Monday Wednesday Friday

class(wd)

ans =

WeekDays

 Refer to Enumerations

14-13

All char vectors in the cell array must correspond to an enumeration member defined by
the class.

Coercion of char to Enumerations

MATLAB coerces char vectors into enumerations members when the dominant argument
is an enumeration. Because user-defined classes are dominant over the char class,
MATLAB attempts to convert the char vector to a member of the enumeration class.

Create an enumeration array. Then insert a char vector that represents an enumeration
member into the array.

a = [WeekDays.Monday,WeekDays.Wednesday,WeekDays.Friday]

a =

 Monday Wednesday Friday

Add a char vector to the WeekDays array.

a(end+1) = 'Tuesday'

a =

 Monday Wednesday Friday Tuesday

MATLAB coerces the char vector to a WeekDays enumeration member.

class(a)

ans =

WeekDays

Substitute Enumeration Members for char Vectors

You can use enumeration members in place of char vectors in cases where functions
require char vectors. For example, this call to sprintf expects a char vector,
designated by the %s format specifier.

sprintf('Today is %s',WeekDays.Friday)

ans =

Today is Friday

14 Enumerations

14-14

The automatic conversion of enumeration classes to char enable you to use enumeration
members in this case.

Enumeration Arrays
Create enumeration arrays by:

• Concatenating enumeration members using []
• Assigning enumeration members to an array using indexed assignment

Create an enumeration array of class WeekDays by concatenating enumeration members:

wd = [WeekDays.Tuesday,WeekDays.Wednesday,WeekDays.Friday];

Create an enumeration array of class WeekDays by indexed assignment:

a(1) = WeekDays.Tuesday;
a(2) = WeekDays.Wednesday;
a(3) = WeekDays.Friday;

Mixed Enumeration Members and char Vectors

You can concatenate enumeration members and char vectors as long as the char vector
represents an enumeration member.

clear a
a = [WeekDays.Wednesday,'Friday'];
class(a)

ans =

WeekDays

You can also assign a char vector to an enumeration array:

clear a
a(1) = WeekDays.Wednesday;
a(2) = 'Friday';
class(a)

ans =

WeekDays

 Refer to Enumerations

14-15

Default Enumeration Member

The default member an enumeration class is the first enumeration member defined in the
enumeration block. For the WeekDays class, the default enumeration member is
WeekDays.Monday.

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
end

MATLAB allows assignment to any element of an array, even if the array variable does not
previously exist. To fill in unassigned array elements, MATLAB uses the default
enumeration member.

For example, assign a value to element 5 of an array, a:

clear a
a(5) = WeekDays.Tuesday;

MATLAB must initialize the values of array elements a(1:4) with the default
enumeration member. The result of the assignment to the fifth element of the array a is:

a

a =

 Monday Monday Monday Monday Tuesday

See Also

Related Examples
• “Operations on Enumerations” on page 14-19

14 Enumerations

14-16

Enumerations for Property Values
In this section...
“Syntax for Property/Enumeration Definition” on page 14-17
“Example of Restricted Property” on page 14-17

Syntax for Property/Enumeration Definition
You can restrict the values that are allowed for a property to members of an enumeration
class. Define the property as restricted to a specific enumeration class in the class
definition using this syntax:

properties
 PropName EnumerationClass
end

This syntax restricts values of PropName to members of the enumeration class
EnumerationClass.

Example of Restricted Property
For example, the Days class defines a property named Today. The allowed values for the
Today property are enumeration members of the WeekDays class.

The WeekDays class defines the enumerations:

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
end

Use the WeekDays enumerations to restrict the allowed values of the Today property:

classdef Days
 properties
 Today WeekDays
 end
end

Create an object of the Days class.

 Enumerations for Property Values

14-17

d = Days;
d.Today = WeekDays.Tuesday;

d =

 Days with properties:

 Today: Tuesday

Representing Enumeration Members with char Vectors

The automatic conversion feature enables users of the Days class to assign values to the
Today property as either enumeration members, char vectors, or string scalars. The
Today property is restricted to members of the WeekDays enumeration class. Therefore,
you can assign a char vector that represents a member of the WeekDays class.

d = Days;
d.Today = 'Tuesday';

Also, you can use a string scalar:

d = Days;
d.Today = "Tuesday";

For more information on restricting property values, see “Validate Property Values” on
page 8-26 and “Property Class and Size Validation” on page 8-33.

14 Enumerations

14-18

Operations on Enumerations
In this section...
“Operations Supported by Enumerations” on page 14-19
“Enumeration Class” on page 14-19
“Default Methods” on page 14-20
“Convert Enumeration Member to Characters” on page 14-20
“Convert Enumeration Array to Cell Array of char Vectors” on page 14-20
“Enumerations and char Vectors in Relational Operations” on page 14-21
“Enumerations in switch Statements” on page 14-22
“Enumeration Set Membership” on page 14-23
“Enumeration Text Comparison Methods” on page 14-24
“How to Get Information About Enumerations” on page 14-25
“Testing for an Enumeration” on page 14-25

Operations Supported by Enumerations
You can use logical, set membership, and string comparison operations on enumerations.
These operations also allow the use of enumeration in conditional statements, such as
switch and if statements. Converters enable you to use char vectors and cell arrays of
strings as enumerations.

Enumeration Class
The WeekDays class defines members that enumerate days of the week. This topic uses
the WeekDays class to illustrate how to perform operations on enumerations.

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
end

For information on defining enumerations, see “Define Enumeration Classes” on page 14-
5.

 Operations on Enumerations

14-19

Default Methods
Enumeration classes have the following default methods:

methods('WeekDays')

Methods for class WeekDays:

WeekDays char intersect ne setxor strcmpi strncmp union
cellstr eq ismember setdiff strcmp string strncmpi

The WeekDays method converts char vectors, a cell array of char vectors, or string
array elements to enumerations.

Other methods behave similarly to the equivalent function when used with enumerations.
For information on a specific method, see the documentation for that function.

Convert Enumeration Member to Characters
Conversion to char is useful because you can define enumeration members with
descriptive names. For example:

today = WeekDays.Friday;
['Today is ',char(today)]

ans =

Today is Friday

Convert Enumeration Array to Cell Array of char Vectors
Use cellstr to convert an enumeration array to a cell array of char vectors.

ca = cellstr([WeekDays.Tuesday,WeekDays.Thursday]);
class(ca)

ans =

cell

Both cells in the cell array contain char vectors:

class([ca{1:2}])

14 Enumerations

14-20

ans =

char

Enumerations and char Vectors in Relational Operations
Expression involving the relational operators, eq and ne, in which one operand is an
enumeration allow the other operand to be of type char. Before performing the
operation, MATLAB converts char vectors to scalar enumerations or cell arrays of char
vectors to enumeration arrays.

Note Enumeration classes that derive from MATLAB built-in classes cannot substitute
char vectors for enumeration members.

today = WeekDays.Friday;
today == 'Friday'

ans =

 1

Compare enumeration array to char vector:

wd = [WeekDays.Monday,WeekDays.Wednesday,WeekDays.Friday];
wd == 'Friday'

ans =

 0 0 1

Compare enumeration array to cell array of char vectors:

cv = {'Monday','Wednesday','Friday'};
md = [WeekDays.Tuesday,WeekDays.Thursday,WeekDays.Friday];
md ~= cv

ans =

 1 1 0

The char vector Wednesday is equal to (==) the enumeration member
WeekDays.Wednesday. You can use this equality in conditional statements:

 Operations on Enumerations

14-21

today = 'Wednesday';
 ...
if today == WeekDays.Wednesday
 disp('Team meeting at 2:00')
end

Enumerations in switch Statements
Equality (eq) and inequality (ne) methods enable you to use enumeration members in
switch statements. For example, using the WeekDays class defined previously, construct
a switch statement:

function c = Reminder(day)
 % Add error checking here
 switch(day)
 case WeekDays.Monday
 c = 'Department meeting at 10:00';
 case WeekDays.Tuesday
 c = 'Meeting Free Day!';
 case {WeekDays.Wednesday WeekDays.Friday}
 c = 'Team meeting at 2:00';
 case WeekDays.Thursday
 c = 'Volleyball night';
 end
end

Pass a member of the WeekDays enumeration class to the Reminder function:

today = WeekDays.Wednesday;
Reminder(today)

ans =

Team meeting at 2:00

For more information, see “Objects In Conditional Statements” on page 5-37.

Substitute char Vectors

Note Enumeration classes that derive from MATLAB built-in classes cannot substitute
char vectors for enumeration members.

14 Enumerations

14-22

You can use char vectors to represent specific enumeration members:

function c = Reminder2(day)
 switch(day)
 case 'Monday'
 c = 'Department meeting at 10:00';
 case 'Tuesday'
 c = 'Meeting Free Day!';
 case {'Wednesday' 'Friday'}
 c = 'Team meeting at 2:00';
 case 'Thursday'
 c = 'Volleyball night';
 end
end

Although you can use char vectors instead of specifying enumerations explicitly, MATLAB
must convert the char to an enumeration. Eliminate the need for this conversion if it is
not necessary.

Enumeration Set Membership
Enumeration classes provide methods to determine set membership.

• ismember — True for elements of an enumeration array if in a set
• setdiff — Set difference for enumeration arrays
• intersect — Set intersection for enumeration arrays
• setxor — Set exclusive-or for enumeration arrays
• union — Set union for enumeration arrays

Determine if today is a meeting day for your team. Create a set of enumeration members
corresponding to the days on which the team has meetings.

today = WeekDays.Tuesday;
teamMeetings = [WeekDays.Wednesday WeekDays.Friday];

Use ismember to determine if today is part of the teamMeetings set:

ismember(today,teamMeetings)

ans =
 0

 Operations on Enumerations

14-23

Mixed Sets of Enumeration and char

If you pass both enumeration and char arguments to an enumeration class method, the
class attempts to convert the char to the class of the enumeration.

Determine if char vector is a member of the enumeration array.

teamMeetings = [WeekDays.Wednesday WeekDays.Friday];
ismember('Friday',teamMeetings)

ans =

 1

Determine if the enumeration member is a member of the cell array of char vectors.

ismember(WeekDays.Friday,{'Wednesday','Friday'})

ans =

 1

Enumeration Text Comparison Methods
Enumeration classes provide methods to compare enumeration members with char
vectors. One of the arguments to the string comparison method must be a char vector.
Comparing two enumeration members returns false.

• strcmp — Compare enumeration members
• strncmp — Compare first n characters of enumeration members
• strcmpi — Case insensitive comparison of enumeration members
• strncmpi — Case insensitive first n character comparison of enumeration members

Comparing Enumeration Member with char Vector

The string comparison methods can compare enumeration members and char vectors.

today = WeekDays.Tuesday;
strcmp(today,'Friday')

ans =

 0

14 Enumerations

14-24

strcmp(today,'Tuesday')

ans =

 1

How to Get Information About Enumerations
Obtain information about enumeration classes using the enumeration function. For
example:

enumeration WeekDays

Enumeration members for class 'WeekDays':

 Monday
 Tuesday
 Wednesday
 Thursday
 Friday

See also “Metaclass EnumeratedValues Property” on page 17-8

Testing for an Enumeration
To determine if a variable is an enumeration, use the isenum function. For example:

today = WeekDays.Wednesday;
isenum(today)

ans =

 1

isenum returns true for empty enumeration objects:

noday = WeekDays.empty;
isenum(noday)

ans =

 1

 Operations on Enumerations

14-25

To determine if the class of a variable class is an enumeration class, use the meta.class
object.

today = WeekDays.Wednesday;
mc = metaclass(today);
mc.Enumeration

ans =

 1

See Also

Related Examples
• “Enumeration Class Restrictions” on page 14-27

14 Enumerations

14-26

Enumeration Class Restrictions
Enumeration classes restrict certain aspects of their use and definition:

• Enumeration classes are implicitly Sealed. You cannot define a subclass of an
enumeration class because doing so would expand the set.

• The properties of value-based enumeration classes are immutable. Only the
constructor can assign property values. MATLAB implicitly defines the SetAccess
attributes of all properties defined by value-based enumeration classes as immutable.
You cannot set the SetAccess attribute to any other value.

• All properties inherited by a value-based enumeration class that are not defined as
Constant must have immutable SetAccess.

• The properties of handle-based enumeration classes are mutable. You can set property
values on instances of the enumeration class. See “Mutable Handle vs. Immutable
Value Enumeration Members” on page 14-34.

• An enumeration member cannot have the same name as a property, method, or event
defined by the same class.

• Enumerations do not support colon (a:b) operations. For example,
FlowRate.Low:FlowRate.High causes an error even if the FlowRate class derives
from a numeric superclass.

• Classes that define enumerations cannot restrict properties of the same class to an
enumeration type. Create a separate enumeration class to restrict property values to
an enumeration. For information on restricting property values, see “Example of
Restricted Property” on page 14-17.

See Also

Related Examples
• “Enumerations Derived from Built-In Types” on page 14-28

 Enumeration Class Restrictions

14-27

Enumerations Derived from Built-In Types
In this section...
“Subclassing Built-In Types” on page 14-28
“Derive Enumeration Class from Numeric Type” on page 14-28
“How to Alias Enumeration Names” on page 14-30
“Superclass Constructor Returns Underlying Value” on page 14-31
“Default Converter” on page 14-32

Subclassing Built-In Types
Enumeration classes can subclass MATLAB built-in classes. Deriving an enumeration
class from built-in classes is useful to extend the usefulness of the enumeration members.

• Enumerations inherit functionality from the built-in class.
• You can associate a numeric or logical value with enumeration members.

For a more basic discussion of enumeration classes, see “Define Enumeration Classes” on
page 14-5.

Derive Enumeration Class from Numeric Type

Note Enumeration classes derived from built-in numeric and logical classes cannot
define properties.

If an enumeration class subclasses a built-in numeric class, the subclass inherits ordering
and arithmetic operations that you can apply to the enumerated names.

For example, the Results class subclasses the int32 built-in class. This class associates
an integer value with each of the four enumeration members — First, Second, Third,
and NoPoints.

classdef Results < int32
 enumeration
 First (100)
 Second (50)

14 Enumerations

14-28

 Third (10)
 NoPlace (0)
 end
end

The enumeration member inherits the methods of the int32 class (except the colon
operator). Use these enumerations like numeric values (summed, sorted, averaged).

isa(Results.Second,'int32')

ans =

 1

For example, use enumeration names instead of numbers to rank two teams:

Team1 = [Results.First, Results.NoPlace, Results.Third, Results.Second];
Team2 = [Results.Second, Results.Third, Results.First, Results.First];

Perform int32 operations on these Results enumerations:

sum(Team1)

ans =

 160

mean(Team1)

ans =

 40

sort(Team2,'descend')

ans =

 First First Second Third

Team1 > Team2

ans =

 1 0 0 0

sum(Team1) < sum(Team2)

 Enumerations Derived from Built-In Types

14-29

ans =

 1

How to Create Enumeration Instances

When you first refer to an enumeration class that derives from a built-in class such as,
int32, MATLAB passes the input arguments associated with the enumeration members
to the superclass constructor. For example, referencing the Second Results member,
defined as:

Second (50)

means that MATLAB calls:

int32(50)

to initialize the int32 aspect of this Results object.

How to Alias Enumeration Names
Enumeration classes that derive from MATLAB built-in numeric and logical classes can
define more than one name for an underlying value. The first name in the enumeration
block with a given underlying value is the actual name for that underlying value and
subsequent names are aliases.

Specify aliased names with the same superclass constructor argument as the actual
name:

classdef Bool < logical
 enumeration
 No (0)
 Yes (1)
 off (0)
 on (1)
 end
end

For example, the actual name of an instance of the Bool.off enumeration member is No:

a = Bool.No

14 Enumerations

14-30

a =

 No

b = Bool.off

b =

 No

Superclass Constructor Returns Underlying Value
The actual underlying value associated with an enumeration member is the value
returned by the built-in superclass. For example, consider the Bool class defined with
constructor arguments that are of class double:

classdef Bool < logical
 enumeration
 No (0)
 Yes (100)
 end
end

This class derives from the built-in logical class. Therefore, underlying values for an
enumeration member depend only on what value logical returns when passed that
value:

a = Bool.Yes

a =

 Yes

logical(a)

ans =

 1

How to Subclass Numeric Built-In Classes

The FlowRate enumeration class defines three members, Low, Medium, and High.

classdef FlowRate < int32
 enumeration

 Enumerations Derived from Built-In Types

14-31

 Low (10)
 Medium (50)
 High (100)
 end
end

Reference an instance of an enumeration member:

setFlow = FlowRate.Medium;

This statement causes MATLAB to call the default constructor with the argument value of
50. MATLAB passes this argument to the first superclass constructor (int32(50) in this
case). The result is an underlying value of 50 as a 32-bit integer for the
FlowRate.Medium member.

Because FlowRate subclasses a built-in numeric class (int32), this class cannot define
properties. However FlowRate inherits int32 methods including a converter method.
Programs can use the converter to obtain the underlying value:

setFlow = FlowRate.Medium;
int32(setFlow)

ans =

 50

Default Converter
If an enumeration is a subclass of a built-in numeric class, you can convert from built-in
numeric data to the enumeration using the name of the enumeration class. For example:

a = Bool(1)

a =

 Yes

An enumerated class also accepts enumeration members of its own class as input
arguments:

Bool(a)

14 Enumerations

14-32

ans =

 Yes

The converter returns an object of the same size as in input:

Bool([0,1])

ans =

 No Yes

Create an empty enumeration array using the empty static method:

Bool.empty

ans =

 0x0 empty Boolean enumeration.

See Also

Related Examples
• “Mutable Handle vs. Immutable Value Enumeration Members” on page 14-34
• “Fundamental MATLAB Classes”

 See Also

14-33

Mutable Handle vs. Immutable Value Enumeration
Members

In this section...
“Select Handle- or Value-Based Enumerations” on page 14-34
“Value-Based Enumeration Classes” on page 14-34
“Handle-Based Enumeration Classes” on page 14-36
“Represent State with Enumerations” on page 14-39

Select Handle- or Value-Based Enumerations
Use a handle enumeration to enumerate a set of objects whose state can change over
time. Use a value enumeration to enumerate a set of abstract (and immutable) values. For
information about handle and value classes, see “Comparison of Handle and Value
Classes” on page 7-2.

Value-Based Enumeration Classes
A value-based enumeration class has a fixed set of specific values. Modify these values by
changing the values of properties. Doing so expands or changes the fixed set of values for
this enumeration class.

Inherited Property SetAccess Must Be Immutable

Value-based enumeration classes implicitly define the SetAccess attributes of all
properties as immutable. You cannot set the SetAccess attribute to any other value.

However, all superclass properties must explicitly define property SetAccess as
immutable.

Enumeration Members Remain Constant

An instance of a value-based enumeration class is unique until the class is cleared and
reloaded. For example, given this class:

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday

14 Enumerations

14-34

 end
end

MATLAB considers a and b as equivalent:

a = WeekDays.Monday;
b = WeekDays.Monday;
isequal(a,b)

ans =

 1

a == b

ans =

 1

Enumeration Member Properties Remain Constant

Value-based enumeration classes that define properties are immutable. For example, the
Colors enumeration class associates RGB values with color names.

classdef Colors
 properties
 R = 0
 G = 0
 B = 0
 end
 methods
 function c = Colors(r,g,b)
 c.R = r; c.G = g; c.B = b;
 end
 end
 enumeration
 Red (1, 0, 0)
 Green (0, 1, 0)
 Blue (0, 0, 1)
 end
end

The constructor assigns the input arguments to R, G, and B properties:

red = Colors.Red;
[red.R,red.G,red.B]

 Mutable Handle vs. Immutable Value Enumeration Members

14-35

ans =

 1 0 0

You cannot change a property value:

red.G = 1;

You cannot set the read-only property 'G' of Colors.

Handle-Based Enumeration Classes
Handle-based enumeration classes that define properties are mutable. Derive
enumeration classes from the handle class when you must be able to change property
values on instances of that class.

Note You cannot derive an enumeration class from matlab.mixin.Copyable because
the number of instances you can create are limited to the ones defined inside the
enumeration block.

An Enumeration Member Remains Constant

Given a handle-based enumeration class with properties, changing the property value of
an instance causes all references to that instance to reflect the changed value.

For example, the HandleColors enumeration class associates RGB values with color
names, the same as the Colors class in the previous example. However, HandleColors
derives from handle:

classdef HandleColors < handle
 properties
 R = 0
 G = 0
 B = 0
 end
 methods
 function c = HandleColors(r, g, b)
 c.R = r; c.G = g; c.B = b;
 end
 end
 enumeration

14 Enumerations

14-36

 Red (1, 0, 0)
 Green (0, 1, 0)
 Blue (0, 0, 1)
 end
end

Create an instance of HandleColors.Red and return the value of the R property:

a = HandleColors.Red;
a.R

ans =

 1

MATLAB constructs the HandleColors.Red enumeration member, which sets the R
property to 1, the G property to 0, and the B property to 0.

Change the value of the R property to 0.8:

a.R = 0.8;

After setting the value of the R property to 0.8, create another instance, b, of
HandleColors.Red:

b = HandleColors.Red;
b.R

ans =

 0.8000

The value of the R property of the newly created instance is also 0.8. A MATLAB session
has only one value for any enumeration member at any given time.

Clearing the workspace variables does not change the current definition of the
enumeration member HandleColors.Red:

clear
a = HandleColors.Red;
a.R

ans =

 0.8000

 Mutable Handle vs. Immutable Value Enumeration Members

14-37

Clear the class to reload the definition of the HandleColors class:

clear classes
a = HandleColors.Red;
a.R

ans =

 1

To prevent reassignment of a given property value, set that property's SetAccess
attribute to immutable.

Equality of Handle-Based Enumerations

Assign two variables to a particular enumeration member:

a = HandleColors.Red;
b = HandleColors.Red;

Compare a and b using isequal:

isequal(a,b)

ans =

 1

The property values of a and b are the same, so isequal returns true. However, unlike
handle classes that are not enumeration classes, a and b are the same handle because
there is only one enumeration member. Determine handle equality using == (the handle
eq method).

a == b

ans =

 1

See the handle eq method for information on how isequal and == differ when used
with handles.

14 Enumerations

14-38

Represent State with Enumerations
The MachineState class defines two enumeration members to represent the state of a
machine, either running or not running.

classdef MachineState
 enumeration
 Running
 NotRunning
 end
end

The Machine class represents a machine with start and stop operations. The
MachineState enumerations are easy to work with because of their eq and char
methods, and they result in code that is easy to read.

classdef Machine < handle
 properties (SetAccess = private)
 State = MachineState.NotRunning
 end

 methods
 function start(machine)
 if machine.State == MachineState.NotRunning
 machine.State = MachineState.Running;
 end
 disp (machine.State.char)
 end
 function stop(machine)
 if machine.State == MachineState.Running
 machine.State = MachineState.NotRunning;
 end
 disp (machine.State.char)
 end
 end
end

Create a Machine object and call start and stop methods

m = Machine;
m.start

Running

m.stop

 Mutable Handle vs. Immutable Value Enumeration Members

14-39

NotRunning

See Also

Related Examples
• “Enumerations That Encapsulate Data” on page 14-41

14 Enumerations

14-40

Enumerations That Encapsulate Data
In this section...
“Enumeration Classes with Properties” on page 14-41
“Store Data in Properties” on page 14-41

Enumeration Classes with Properties
Enumeration classes can define properties to store data values. The enumeration
members represent specific values for these properties, which MATLAB assigns in the
class constructor. For information on defining enumeration classes, see “Define
Enumeration Classes” on page 14-5.

Store Data in Properties

Note Enumeration classes that subclass built-in numeric or logical classes cannot define
or inherit properties. For more information on this kind of enumeration class, see
“Enumerations Derived from Built-In Types” on page 14-28 .

Define properties in an enumeration class if you want to associate specific data with
enumeration members, but do not need to inherit arithmetic, ordering, or other
operations that MATLAB defines for specific built-in classes.

Representing Colors

Define an enumeration class to represent the RGB values of the colors in a color set. The
Colors class defines names for the colors, each of which uses the RGB values as
arguments to the class constructor:

classdef Colors
 properties
 R = 0
 G = 0
 B = 0
 end
 methods
 function c = Colors(r, g, b)
 c.R = r; c.G = g; c.B = b;

 Enumerations That Encapsulate Data

14-41

 end
 end
 enumeration
 Blueish (18/255,104/255,179/255)
 Reddish (237/255,36/255,38/255)
 Greenish (155/255,190/255,61/255)
 Purplish (123/255,45/255,116/255)
 Yellowish (1,199/255,0)
 LightBlue (77/255,190/255,238/255)
 end
end

You can access the property values via the enumeration member:

Colors.Reddish.R

ans =

 0.9294

Suppose that you want to create a plot with the new shade of red named Reddish:

a = Colors.Reddish;
[a.R,a.G,a.B]

ans =

 0.9294 0.1412 0.1490

Use these values by accessing the enumeration member properties. For example, the
myPlot function accepts a Colors enumeration member as an input argument. The
function accesses the RGB values defining the color from the property values.

function h = myPlot(x,y,LineColor)
 h = line('XData',x,'YData',y);
 r = LineColor.R;
 g = LineColor.G;
 b = LineColor.B;
 h.Color = [r g b];
end

Create a plot using a reddish color line:

h = myPlot(1:10,1:10,Colors.Reddish);

14 Enumerations

14-42

The Colors class encapsulates the definitions of a standard set of colors. You can change
the enumeration class definition of the colors and not affect functions that use the
enumerations.

Enumerations Defining Categories

The Cars class defines categories used to inventory automobiles. The Cars class derives
from the CarPainter class, which derives from handle. The abstract CarPainter class
defines a paint method, which modifies the Color property when a car is painted
another color.

The Cars class uses the Colors enumeration members to specify a finite set of available
colors. The exact definition of any given color can change independently of the Cars
class.

classdef Cars < CarPainter
 enumeration
 Hybrid (2,'Manual',55,Colors.Reddish)
 Compact(4,'Manual',32,Colors.Greenish)
 MiniVan(6,'Automatic',24,Colors.Blueish)
 SUV (8,'Automatic',12,Colors.Yellowish)
 end
 properties (SetAccess = private)
 Cylinders
 Transmission
 MPG
 Color
 end
 methods
 function obj = Cars(cyl,trans,mpg,colr)
 obj.Cylinders = cyl;
 obj.Transmission = trans;
 obj.MPG = mpg;
 obj.Color = colr;
 end
 function paint(obj,colorobj)
 if isa(colorobj,'Colors')
 obj.Color = colorobj;
 else
 [~,cls] = enumeration('Colors');
 disp('Not an available color')
 disp(cls)
 end
 end

 Enumerations That Encapsulate Data

14-43

 end
end

The CarPainter class requires its subclasses to define a method called paint:

classdef CarPainter < handle
 methods (Abstract)
 paint(carobj,colorobj)
 end
end

Define an instance of the Cars class:

c1 = Cars.Compact;

The color of this car is Greenish, as defined by the Colors.Greenish enumeration:

c1.Color

ans =

 Greenish

Use the paint method to change the car color:

c1.paint(Colors.Reddish)
c1.Color

ans =

 Reddish

See Also

Related Examples
• “Save and Load Enumerations” on page 14-45
• “Enumerations for Property Values” on page 14-17

14 Enumerations

14-44

Save and Load Enumerations

In this section...
“Basic Knowledge” on page 14-45
“Built-In and Value-Based Enumeration Classes” on page 14-45
“Simple and Handle-Based Enumeration Classes” on page 14-45
“Causes: Load as struct Instead of Object” on page 14-46

Basic Knowledge
See the save and load functions and “Save and Load Process for Objects” on page 13-2
for general information on saving and loading objects.

To see a list of enumeration names defined by a class, use the enumeration function.

Built-In and Value-Based Enumeration Classes
When you save enumerations that derive from built-in classes or that are value-based
classes with properties, MATLAB saves the names of the enumeration members and the
definition of each member.

When loading these enumerations, MATLAB preserves names over underlying values. If
the saved named value is different from the current class definition, MATLAB uses the
value defined in the current class, and then issues a warning.

Simple and Handle-Based Enumeration Classes
When you save simple enumerations that have no properties, superclasses, or values
associated with the member names or enumerations derived from the handle class,
MATLAB saves the names and any underlying values.

When loading these types of enumerations, MATLAB does not check the values associated
with the names in the current class definition. This behavior results from the fact that
simple enumerations have no underlying values and handle-based enumerations can
legally have values that are different than those values defined by the class.

 Save and Load Enumerations

14-45

Causes: Load as struct Instead of Object
If you add a new named value or a new property to a class after saving an enumeration,
MATLAB does not warn during load.

If the changes to the enumeration class definition do not prevent MATLAB from loading
the object (that is, all the named values in the MAT-File are present in the modified class
definition), then MATLAB issues a warning that the class has changed and loads the
enumeration.

In the following cases, MATLAB issues a warning and loads as much of the saved data as
possible as a struct:

• MATLAB cannot find the class definition
• The class is no longer an enumeration class
• MATLAB cannot initialize the class
• There are one or more enumeration members in the loaded enumeration that is not in

the class definition
• If the class is a value-based enumeration with properties and a property that exists in

the file, is not present in the class definition

struct Fields

The returned struct has these fields:

• ValueNames — A cell array of strings, one per unique value in the enumeration array.
• Values — An array of the same dimension as ValueNames containing the

corresponding values of the enumeration members named in ValueNames. Depending
on the kind of enumeration class, Values can be one of the following:

• If the enumeration class derives from a built-in class, the array class is the same as
the built-in class. The values in the array are the underlying values of each
enumeration member.

• Otherwise, a struct array representing the property name — property values
pairs of each enumeration member. For simple and handle-based enumerations, the
struct array has no fields.

• ValueIndices — a uint32 array of the same size as the original enumeration. Each
element is an index into the ValueNames and Values arrays. The content of
ValueIndices represents the value of each object in the original enumeration array.

14 Enumerations

14-46

See Also

More About
• “Named Values” on page 14-2

 See Also

14-47

Constant Properties

15

Define Class Properties with Constant Values
In this section...
“Defining Named Constants” on page 15-2
“Constant Property Assigned a Handle Object” on page 15-4
“Constant Property Assigned Any Object” on page 15-4
“Constant Properties — No Support for Get Events” on page 15-6

Defining Named Constants
You can define constants that you can refer to by name by creating a MATLAB class that
defines constant properties.

Use constant properties to define constant values that you can access by name. Create a
class with constant properties by declaring the Constant attribute in the property
blocks. Setting the Constant attribute means that, once initialized to the value specified
in the property block, the value cannot be changed.

Assigning Values to Constant Properties

Assign any value to a Constant property, including a MATLAB expression. For example:

classdef NamedConst
 properties (Constant)
 R = pi/180
 D = 1/NamedConst.R
 AccCode = '0145968740001110202NPQ'
 RN = rand(5)
 end
end

MATLAB evaluates the expressions when loading the class. Therefore, the values
MATLAB assigns to RN are the result of a single call to the rand function and do not
change with subsequent references to NamedConst.RN. Calling clear classes causes
MATLAB to reload the class and reinitialize the constant properties.

Referencing Constant Properties

Refer to the constant using the class name and the property name:

15 Constant Properties

15-2

ClassName.PropName

For example, to use the NamedConst class defined in the previous section, reference the
constant for the degree to radian conversion, R:

radi = 45*NamedConst.R

radi =

 0.7854

Constants in Packages

To create a library for constant values that you can access by name, first create a package
folder, then define the various classes to organize the constants. For example, to
implement a set of constants that are useful for making astronomical calculations, define
a AstroConstants class in a package called constants:

+constants/@AstroConstants/AstroConstants.m

The class defines a set of Constant properties with values assigned:

classdef AstroConstants
 properties (Constant)
 C = 2.99792458e8 % m/s
 G = 6.67259 % m/kgs
 Me = 5.976e24 % Earth mass (kg)
 Re = 6.378e6 % Earth radius (m)
 end
end

To use this set of constants, reference them with a fully qualified class name. For
example, the following function uses some of the constants defined in AstroContants:
function E = energyToOrbit(m,r)
 E = constants.AstroConstants.G * constants.AstroConstants.Me * m * ...
 (1/constants.AstroConstants.Re-0.5*r);
end

Importing the package into the function eliminates the need to repeat the package name
(see import):

function E = energyToOrbit(m,r)
 import constants.*;
 E = AstroConstants.G * AstroConstants.Me * m * ...

 Define Class Properties with Constant Values

15-3

 (1/AstroConstants.Re - 0.5 * r);
end

Constant Property Assigned a Handle Object
If a class defines a constant property with a value that is a handle object, you can assign
values to the handle object properties. To access the handle object, create a local
variable.

For example, the ConstMapClass class defines a constant property. The value of the
constant property is a handle object (a containers.Map object).

classdef ConstMapClass < handle
 properties (Constant)
 ConstMapProp = containers.Map
 end
end

To assign the current date to the Date key, return the handle from the constant property,
then make the assignment using the local variable on the left side of the assignment
statement:

localMap = ConstMapClass.ConstMapProp
localMap('Date') = datestr(clock);

You cannot use a reference to a constant property on the left side of an assignment
statement. For example, MATLAB interprets the following statement as the creation of a
struct named ConstMapClass with a field ConstMapProp:

ConstMapClass.ConstMapProp('Date') = datestr(clock);

Constant Property Assigned Any Object
You can assign an instance of the defining class to a constant property. MATLAB creates
the instance assigned to the constant property when loading the class. Use this technique
only when the defining class is a handle class.

The MyProject is an example of such a class:

classdef MyProject < handle
 properties (Constant)
 ProjectInfo = MyProject

15 Constant Properties

15-4

 end
 properties
 Date
 Department
 ProjectNumber
 end
 methods (Access = private)
 function obj = MyProject
 obj.Date = datestr(clock);
 obj.Department = 'Engineering';
 obj.ProjectNumber = 'P29.367';
 end
 end
end

Reference property data via the Constant property:

MyProject.ProjectInfo.Date

ans =

18-Apr-2002 09:56:59

Because MyProject is a handle class, you can get the handle to the instance that is
assigned to the constant property:

p = MyProject.ProjectInfo;

Access the data in the MyProject class using this handle:

p.Department

ans =

Engineering

Modify the nonconstant properties of the MyProject class using this handle:

p.Department = 'Quality Assurance';

p is a handle to the instance of MyProject that is assigned to the ProjectInfo constant
property:

MyProject.ProjectInfo.Department

 Define Class Properties with Constant Values

15-5

ans =

Quality Assurance

Clearing the class results in the assignment of a new instance of MyProject to the
ProjectInfo property.

clear MyProject
MyProject.ProjectInfo.Department

ans =

Engineering

You can assign an instance of the defining class as the default value of a property only
when the property is declared as Constant

Constant Properties — No Support for Get Events
Constant properties do not support property PreGet or PostGet events. MATLAB issues
a warning during class initialization if you set the GetObservable attribute of a
Constant property to true.

See Also

Related Examples
• “Static Data” on page 4-2

More About
• “Named Values” on page 14-2

15 Constant Properties

15-6

Class Aliasing

16

Aliases for Class Names
In this section...
“When to Use Aliases” on page 16-2
“Defining Aliases” on page 16-2
“Alias Definition Folders and Files” on page 16-3
“Aliases and the MATLAB Path” on page 16-4
“Sequential Renaming” on page 16-4
“Updating Aliases in a MATLAB Session” on page 16-5
“Aliasing Examples” on page 16-5

When to Use Aliases
Changing the name of a class can cause incompatibilities with code written before the
name change. Also, incompatibilities can occur with objects that have been saved before a
name change and then are reloaded into MATLAB versions that use the new name. To
mitigate problems associated with name changes, define an alias for the old name.

Aliases enable you to maintain backward compatibility when renaming classes in the
following ways.

• Existing code that uses old names works in newer versions of MATLAB that uses the
new names.

• Versions of MATLAB that use the new name can load MAT files containing objects that
were created using the old names.

• Versions of MATLAB that use the old name can load MAT files containing objects
created using the new name when the alias file was present in the version that created
the objects.

Once defined, you can use aliases anywhere that you can use the class name. When you
use the old class name, MATLAB substitutes the new class name.

Defining Aliases
An alias definition is a mapping of an old name to a new name. Aliases are not part of
class definitions. Aliases are stored in special resource files that are co-located with the
class definition.

16 Class Aliasing

16-2

Define aliases in code blocks using the aliasdef and classalias keywords:
aliasdef
 classalias
 OldClassName -> NewClassName
 OldestClassName -> NextOldestClassName -> ... -> CurrentClassName
 end
end

The classalias block can contain multiple name mappings and the aliasdef block can
contain multiple classalias blocks. There is no significance to the order of the
mappings or the classalias blocks. The definition can have only one aliasdef block.
Store the definition in a file name alias.

New class names can appear only once per aliasdef block. If you rename a class
multiple times, list all the names in a single line that chains the name in sequence from
oldest to newest, as described in “Sequential Renaming” on page 16-4.

To rename a package, you must define aliases for all the classes in the package. However,
you cannot create aliases for package functions. To rename a package that contains
functions, keep the old package in place and redefine the package functions to redirect to
the functions in the new package. For an example that renames a package, see “Rename
Package” on page 16-9.

Alias Definition Folders and Files
Alias definition files must be named alias and have no file extension. Locate the alias
file in a folder named resources. The resources folder must be subfolder of the path
folder that contains the classes being aliased. You can add the alias file to an existing
resources folder.

Once the new class definition is in place, remove the original class definition file so that
MATLAB finds the alias instead of the old class definition.

For example, in the following diagram, the C:\utilities\classes\general folder
contains the resources folder and the class definition file (MyNewUtility.m). The
resources folder contains the alias file.

C:\utilities\classes
├── general <--- path folder
│ └── resources <--- add resources folder
│ ├── alias <--- alias file added to resources folder
│ ├── MyNewUtility.m
│ ├── ...

 Aliases for Class Names

16-3

The alias file contains the following mapping, assuming the original class name was
MyUtility.

aliasdef
 classalias
 MyUtility -> MyNewUtility
 end
end

The alias redirects all calls to MyUtility to the new name, MyNewUtility. In this
example, replace the file MyUtility.m with the new class file, MyNewUtility.m.

Aliases and the MATLAB Path
The folder that contains the resources folder must be on the MATLAB path. The path
location of an alias is determined by the location of the folder containing the resources
folder in which the alias definition file is located. Always co-locate the resources folder
with the new class file or package.

For more information about folder ordering on the MATLAB path, see “What Is the
MATLAB Search Path?”.

Sequential Renaming
If you rename a class more than one time, for example over subsequent releases, map all
old names to the new name in a sequential mapping. Alias files allow only one occurrence
of a class name so all changes must be chained together. For example, If ClassA is
renamed to ClassB and then renamed to ClassC, the alias file entry looks like this:

aliasdef
 classalias
 ClassA -> ClassB -> ClassC
 end
end

Maintain compatibility by ordering the name changes in the chronological order they
were introduced. List the oldest name as the leftmost name and the newest name as the
rightmost name.

16 Class Aliasing

16-4

Updating Aliases in a MATLAB Session
When you modify an alias definition, MATLAB must reload the alias file to access the
updated alias information. To force the reloading of the alias definition, remove the folder
containing the resources folder from the MATLAB path using the rmpath function.
Then add the folder to the path using the addpath function.

For example, suppose the C:\utilities\classes\general folder is on the MATLAB
path and contains a resources folder that contains an alias file. After modifying the
aliases defined in the alias file, force MATLAB to reload the alias definitions with these
commands.

rmpath('C:\utilities\classes\general')
addpath('C:\utilities\classes\general')

Aliasing Examples
Rename Path Class

Rename a class that is in a folder on the path:

• Add a resources folder to the folder that contains the class or use an existing
resources folder.

• Define the alias file in the resources folder.
• Specify the name mapping in the alias file.
• Remove the original class definition and save the new class definition using the new

name.

For example, rename a class named OldClassName to NewClassName.

Before After
C:\utilities\classes
├── general <--- path folder
│ ├── OldClassName.m
│ ├── ...

C:\utilities\classes
├── general <--- path folder
│ └── resources <--- add resources folder
│ ├── alias <--- add alias file to resources folder
│ ├── NewClassName.m
│ ├── ...

Create this aliasdef code block in the alias file.

 Aliases for Class Names

16-5

aliasdef
 classalias
 OldClassName -> NewClassName
 end
end

After creating the alias, any calls to OldClassName result in a call to NewClassName.

obj = OldClassName;
class(obj)

ans =

 'NewClassName'

Rename Package Class

Rename a class that is in a package.

• Add a resources folder to the folder that contains the package or use an existing
resources folder.

• Define the alias file in the resources folder.
• Specify the name mapping in the alias file.
• Replace the original class definition file with the new class definition file.

For example, rename a class named pkage.OldClassName to pkage.NewClassName.

Before After
C:\utilities\classes
├── general <--- path folder
│ └── +pkage
│ ├── OldClassName.m
│ ├── OtherClass1.m
│ ├── OtherClass2.m
│ ├── ...

C:\utilities\classes
├── general <--- path folder
│ └── resources <--- add resources folder
│ ├── alias <--- add alias file to resources folder
│ └── +pkage
│ ├── NewClassName.m
│ ├── OtherClass1.m
│ ├── OtherClass2.m
│ ├── ...

Create the alias file and define the redirection for pkage.OldClassName to
pkage.NewClassName. Only the renamed class is affected by the name change.

aliasdef
 classalias

16 Class Aliasing

16-6

 pkage.OldClassName -> pkage.NewClassName
 end
end

After creating the alias, any calls to pkage.OldClassName result in a call to
pkage.NewClassName.

obj = pkage.OldClassName;
class(obj)

ans =

 'pkage.NewClassName'

Move Class to Package

Move a class that is in a path folder into a package.

• Add a resources folder to the folder that contains the package where the new class
will be located.

• Define the alias file in the resources folder.
• Specify the name mapping in the alias file. Map the class name to package and class

name.
• Move the original class definition file into the package.

For example, to map a class named ClassName to pkage.ClassName, add a folder called
resources to the path folder that contains the package that will contain the class. Add
the alias file to the resources folder.

Before After
C:\utilities\classes
├── general <--- path folder
│ ├── ClassName.m
│ ├── ...

C:\utilities\classes
├── general <--- path folder
│ └── resources <--- add resources folder
│ ├── alias <--- add alias file to resources
│ └── +pkage
│ ├── ClassName.m
│ ├── ...

Define the aliasdef code block in the alias file. The alias file contains the
redirection for ClassName to pkage.ClassName.

aliasdef
 classalias

 Aliases for Class Names

16-7

 ClassName -> pkage.ClassName
 end
end

After creating the alias, any calls to ClassName result in a call to pkage.ClassName.

obj = ClassName;
class(obj)

ans =

 'pkage.ClassName'

Move Class in a Class Folder into Package

Move a class that is defined in a class folder (a folder named @ClassName) into a
package.

• Add a resources folder to the folder containing the package that will contain the
class folder.

• Define the alias file in the resources folder.
• Specify the name mapping in the alias file. Map the simple class name to use the

package and class name.
• Move the original class folder with the definition files that it contains into the package.

For information on class folders, see “Using Class Folders” on page 6-18.

For example, move a class named ClassName that is in a class folder, @ClassName, to a
package named pkage.

Before After
C:\utilities\classes
├── general <--- path folder
│ └── @ClassName <--- Class folder
│ ├── ClassName.m
│ ├── method1.m
│ ├── method2.m
│ ├── ...

C:\utilities\classes
├── general <--- path folder
│ └── resources <--- add resources folder
│ ├── alias <--- add alias file to resources folder
│ └── +pkage
│ └── @ClassName <--- Class folder
│ ├── ClassName.m
│ ├── method1.m
│ ├── method2.m
│ ├── ...

16 Class Aliasing

16-8

Define the aliasdef code block in the alias file. The alias file contains the
redirection for ClassName to pkage.ClassName.

aliasdef
 classalias
 ClassName -> pkage.ClassName
 end
end

After creating the alias, any calls to ClassName result in a call to pkage.ClassName.

obj = ClassName;
class(obj)

ans =

 'pkage.ClassName'

Rename Package

Rename a package by mapping all classes in the package to the new package name.

• Add a resources folder to the folder that contains the new package.
• Define the alias file in the resources folder.
• Specify the name mapping in the alias file. Map the original package contents to the

new package contents.
• Retain the original package to contain any package functions that are redefined as

wrappers for functions in the new package. Remove the aliased class files from the
original package.

You can create aliases only for classes. If a package contains functions, then you must
keep the original package in place to contain those functions. Then redefine each function
in the original package as a wrapper for the functions in the new package. When called,
the original package functions redirect to the functions in the new package.

For example, rename pkageA to pkageB.subpkage. Put the resources folder in the
path folder containing the top-level package.

 Aliases for Class Names

16-9

Before After
C:\utilities\classes
├── general <--- path folder
│ └── +pkageA
│ ├── pkFunction.m
│ ├── Class1.m
│ ├── Class2.m

C:\utilities\classes
├── general <--- path folder
│ └── resources <--- add resources folder
│ ├── alias <--- add alias file
│ └── +pkageB
│ └── +subpkage
│ ├── pkFunction.m
│ ├── Class1.m
│ ├── Class2.m

Because the original package contained a function, you must retain the original package
with the original package function name, pkageA.pkFunction. Redefine this function to
be a wrapper for the function in the new package, pkageB.subpkage.pkFunction.

Original Package After Alising the Classes
C:\utilities\classes
├── general <--- path folder
│ └── +pkageA
│ ├── pkFunction.m

The alias file contains the redirection from pkageA to pkageB.subpkage for all the
classes in the package.

aliasdef
 classalias
 pkageA.Class1 -> pkageB.subpkage.Class1
 pkageA.Class2 -> pkageB.subpkage.Class2
 end
end

See Also
path

Related Examples
• “Search Path”
• “Class File Organization”

16 Class Aliasing

16-10

Information from Class Metadata

• “Class Metadata” on page 17-2
• “Class Introspection with Metadata” on page 17-5
• “Find Objects with Specific Values” on page 17-10
• “Get Information About Properties” on page 17-14
• “Find Default Values in Property Metadata” on page 17-20

17

Class Metadata

In this section...
“What Is Class Metadata?” on page 17-2
“The meta Package” on page 17-3
“Metaclass Objects” on page 17-3
“Metaclass Object Lifecycle” on page 17-4

What Is Class Metadata?
Class metadata is information about class definitions that is available from various
metaclasses objects. Use metaclass objects to obtain information without having to create
instances of the class. Metadata enables the programmatic inspection of classes. Each
metaclass has properties, methods, and events that contain information about the class or
class component it describes.

All class components have an associated metaclass, which you access from the
meta.class object. For example, create the meta.class object for the
matlab.mixin.Copyable class:

mc = ?matlab.mixin.Copyable

mc =

 class with properties:

 Name: 'matlab.mixin.Copyable'
 Description: 'Implement copy method for handle objects in MA...'
 DetailedDescription: ''
 Hidden: 0
 Sealed: 0
 Abstract: 1
 Enumeration: 0
 ConstructOnLoad: 1
 HandleCompatible: 1
 InferiorClasses: {0x1 cell}
 ContainingPackage: [1x1 meta.package]
 PropertyList: [0x1 meta.property]
 MethodList: [19x1 meta.method]
 EventList: [1x1 meta.event]
 EnumerationMemberList: [0x1 meta.EnumeratedValue]
 SuperclassList: [1x1 meta.class]

17 Information from Class Metadata

17-2

The meta Package
The meta package contains metaclasses that describe the definition of classes and class
components. The class name indicates the component described by the metaclass. For
example, each class property has a meta.property associated with it. Attributes defined
for class components correspond to properties in the respective metaclass object.

• meta.package — Access from meta.class ContainingPackage property.
• meta.class — Create from class name or class object using metaclass function or ?

operator.
• meta.property — Access from meta.class PropertyList property.
• meta.DynamicProperty — Obtain from the addprop method.
• meta.method — Access from meta.class MethodList property.
• meta.event — Access from meta.class EventList property.
• meta.EnumeratedValue — Access from meta.class

EnumerationMemberListList property.

Metaclass Objects
You cannot instantiate metaclasses directly by calling the respective class constructor.
Create metaclass objects from class instances or from the class name.

• ?ClassName — Returns a meta.class object for the named class. Use
meta.class.fromName with class names stored as characters in variables.

• meta.class.fromName('ClassName') — returns the meta.class object for the
named class (meta.class.fromName is a meta.class method).

• metaclass(obj) — Returns a metaclass object for the class instance (metaclass)

Create meta.class object from class name using the ? operator:

mc = ?MyClass;

Create meta.class object from class name using the fromName method:

mc = meta.class.fromName('MyClass');

Create meta.class object from class instance

obj = MyClass;
mc = metaclass(obj);

 Class Metadata

17-3

The metaclass function returns the meta.class object (that is, an object of the
meta.class class). You can obtain other metaclass objects (meta.property,
meta.method, and so on) from the meta.class object.

Note Metaclass is a term used here to refer to all the classes in the meta package.
meta.class is a class in the meta package whose instances contain information about
MATLAB classes. Metadata is information about classes contained in metaclasses.

Metaclass Object Lifecycle
When you change a class definition, MATLAB reloads the class definition. If instances of
the class exist, MATLAB updates those objects according to the new definition.

However, MATLAB does not update existing metaclass objects to the new class definition.
If you change a class definition while metaclass objects of that class exist, MATLAB
deletes the metaclass objects and their handles become invalid. You must create a new
metaclass object after updating the class.

For information on how to modify and reload classes, see “Automatic Updates for Modified
Classes” on page 5-51.

See Also

Related Examples
• “Class Introspection with Metadata” on page 17-5
• “Find Objects with Specific Values” on page 17-10
• “Get Information About Properties” on page 17-14
• “Find Default Values in Property Metadata” on page 17-20

17 Information from Class Metadata

17-4

Class Introspection with Metadata
In this section...
“Using Class Metadata” on page 17-5
“Inspect the EmployeeData Class” on page 17-5
“Metaclass EnumeratedValues Property” on page 17-8

Using Class Metadata
Use class metadata to get information about classes and objects programmatically. For
example, you can determine attribute values for class members or get a list of events
defined by the class. For basic information about metadata, see “Class Metadata” on page
17-2.

Inspect the EmployeeData Class
The EmployeeData class is a handle class with two properties, one of which has private
Access and defines a set access method.

classdef EmployeeData < handle
 properties
 EmployeeName
 end
 properties (Access = private)
 EmployeeNumber
 end
 methods
 function obj = EmployeeData(name,ss)
 if nargin > 0
 obj.EmployeeName = name;
 obj.EmployeeNumber = ss;
 end
 end
 function set.EmployeeName(obj,name)
 if ischar(name)
 obj.EmployeeName = name;
 else
 error('Employee name must be a char vector')
 end
 end

 Class Introspection with Metadata

17-5

 end
end

Inspect Class Definition

Using the EmployeeData class, create a meta.class object using the ? operator:

mc = ?EmployeeData;

Determine from what classes EmployeeData derives. The returned value is a
meta.class object for the handle superclass:

a = mc.SuperclassList;
a.Name

ans =

handle

The EmployeeData class has only one superclass. For classes having more than one
direct superclass, a contains a meta.class object for each superclass.

Use an indexed reference to refer to any particular superclass:

a(1).Name

or, directly from mc:

mc.SuperclassList(1).Name

ans =

handle

The SuperclassList property contains only direct superclasses.

Inspect Properties

Find the names of the properties defined by the EmployeeData class. First obtain an
array of meta.properties objects from the meta.class PropertyList property.

mc = ?EmployeeData;
mpArray = mc.PropertyList;

The length of mpArray indicates that there are two meta.property objects, one for
each property defined by the EmployeeData class:

17 Information from Class Metadata

17-6

length(mpArray)
ans =
 2

Now get a meta.property object from the array:

prop1 = mpArray(1);
prop1.Name

ans =

EmployeeName

The Name property of the meta.property object identifies the class property
represented by that meta.property object.

Query other meta.property object properties to determine the attributes of the
EmployeeName properties.

Find Component with Specific Attribute

You can use indexing techniques to list class components that have specific attribute
values. For example, this code lists the methods in the EmployeeData class that have
private access:

mc = ?EmployeeData;
mc.PropertyList(ismember({mc.PropertyList(:).SetAccess},'private')).Name

ans =

EmployeeNumber

Access is not a property of the meta.property class. Use SetAccess and GetAccess,
which are properties of the meta.property class.

Find components with attributes that are logical values using a statement like this one:

mc = ?handle;
mc.MethodList(ismember([mc.MethodList(:).Hidden],true)).Name

ans =

empty

 Class Introspection with Metadata

17-7

Inspect Class Instance

Create an EmployeeData object and determine property access settings:

EdObj = EmployeeData('My Name',1234567);
mcEdObj = metaclass(EdObj);
mpArray = mcEdObj.PropertyList;
EdObj.(mpArray(1).Name) % Dynamic field names work with objects

The value of the EmployeeName property is the text My Name, which was assigned in the
constructor.
ans =
 My Name

The value of the EmployeeNumber property is not accessible because the property has
private Access.

EdObj.(mpArray(2).Name)

You cannot get the 'EmployeeNumber' property of EmployeeData.

mpArray(2).GetAccess

ans =
 private

Obtain a function handle to the EmployeeName property set access function:

mpArray(1).SetMethod

ans =
 @D:\MyDir\@EmployeeData\EmployeeData.m>EmployeeData.set.EmployeeName

Metaclass EnumeratedValues Property
The meta.class EnumeratedValues property contains an array of
meta.EnumeratedValue objects, one for each enumeration member. Use the
meta.EnumeratedValue Name property to obtain the enumeration member names
defined by an enumeration class. For example, given the WeekDays enumeration class:

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
end

17 Information from Class Metadata

17-8

Query enumeration names from the meta.class object:

mc = ?WeekDays;
mc.EnumerationMemberList(2).Name

ans =

Tuesday

See Also

Related Examples
• “Find Objects with Specific Values” on page 17-10

 See Also

17-9

Find Objects with Specific Values
In this section...
“Find Handle Objects” on page 17-10
“Find by Attribute Settings” on page 17-11

Find Handle Objects
Use the handle class findobj method to find objects that have properties with specific
values. For example, the following class defines a PhoneBook object to represent a
telephone book entry in a data base. The PhoneBook class subclasses the dynamicprops
class, which derives from handle.

classdef PhoneBook < dynamicprops
 properties
 Name
 Address
 Number
 end
 methods
 function obj = PhoneBook(n,a,p)
 obj.Name = n;
 obj.Address = a;
 obj.Number = p;
 end
 end
end

Here are three of the PhoneBook entries in the database:
PB(1) = PhoneBook('Nancy Vidal','123 Washington Street','5081234567');
PB(2) = PhoneBook('Nancy Vidal','123 Main Street','5081234568');
PB(3) = PhoneBook('Nancy Wong','123 South Street','5081234569');

One of these three PhoneBook objects has a dynamic property:

PB(2).addprop('HighSpeedInternet');
PB(2).HighSpeedInternet = '1M';

Find Property/Value Pairs

Find the object representing employee Nancy Wong and display the name and number by
concatenating the strings:

17 Information from Class Metadata

17-10

NW = findobj(PB,'Name','Nancy Wong');
[NW.Name,' - ',NW.Number]

ans =

Nancy Wong - 5081234569

Find Objects with Specific Property Names

Search for objects with specific property names using the -property option:

H = findobj(PB,'-property','HighSpeedInternet');
H.HighSpeedInternet

ans =

1M

The -property option enables you to omit the value of the property and search for
objects using only the property name.

Using Logical Expressions

Search for specific combinations of property names and values:
H = findobj(PB,'Name','Nancy Vidal','-and','Address','123 Main Street');
H.Number

ans =

5081234568

Find by Attribute Settings
All metaclasses derive from the handle class. You can use the handle findobj method
to find class members that have specific attribute settings.

For example, find the abstract methods in a class definition by searching the meta.class
MethodList for meta.method objects with their Abstract property set to true:

Use the class name in character format because class is abstract. You cannot create an
object of the class:

mc = meta.class.fromName('MyClass');

 Find Objects with Specific Values

17-11

Search the MethodList list of meta.method objects for those methods that have their
Abstract property set to true:

absMethods = findobj(mc.MethodList,'Abstract',true);
methodNames = {absMethods.Name};

The cell array, methodNames, contains the names of the abstract methods in the class.

Find Properties That Have Public Get Access

Find the names of all properties in the containers.Map class that have public
GetAccess:

• Get the meta.class object.
• Use findobj to search the array of meta.property objects.
• Use braces to create a cell array of property names.

mc = ?containers.Map;
mpArray = findobj(mc.PropertyList,'GetAccess','public');
names = {mpArray.Name};

Display the names of all containers.Map properties that have public GetAccess:

celldisp(names)

names{1} =

Count

 names{2} =

KeyType

names{3} =

ValueType

Find Static Methods

Determine if any containers.Map class methods are static:

~isempty(findobj([mc.MethodList(:)],'Static',true))

17 Information from Class Metadata

17-12

ans =

 1

findobj returns an array of meta.method objects for the static methods. In this case,
the list of static methods is not empty. Therefore, there are static methods defined by this
class.

Get the names of any static methods from the meta.method array:

staticMethodInfo = findobj([mc.MethodList(:)],'Static',true);
staticMethodInfo(:).Name

ans =

empty

The name of the static method (there is only one in this case) is empty. Here is the
information from the meta.method object for the empty method:

staticMethodInfo

 method with properties:

 Name: 'empty'
 Description: 'Returns an empty object array of the given size'
 DetailedDescription: ''
 Access: 'public'
 Static: 1
 Abstract: 0
 Sealed: 0
 Hidden: 1
 InputNames: {'varargin'}
 OutputNames: {'E'}
 DefiningClass: [1x1 meta.class]

See Also
empty

Related Examples
• “Get Information About Properties” on page 17-14

 See Also

17-13

Get Information About Properties
In this section...
“The meta.property Object” on page 17-14
“How to Find Properties with Specific Attributes” on page 17-17

The meta.property Object
Use the meta.property class to determine the values of property attributes. The
writable properties of a meta.property object correspond to the attributes of the
associated property. The values of the writable meta.property properties correspond to
the attribute values specified in the class definition.

Get the meta.property object for a property from the meta.class object. To get the
meta.class object for a class:

• Use the metaclass function on an object of the class.
• Use the ? operator with the class name.

For example, the BasicHandle class defines three properties:

classdef BasicHandle < handle
 properties (SetAccess = private)
 Date = date
 PassKey = randi(9,[1,7])
 end
 properties
 Category {mustBeMember(Category,{'new','change'})} = 'new'
 end
end

Create the meta.class object using the ? operator with the class name:

mc = ?BasicHandle

mc =

 class with properties:

 Name: 'BasicHandle'
 Description: ''

17 Information from Class Metadata

17-14

 DetailedDescription: ''
 Hidden: 0
 Sealed: 0
 Abstract: 0
 Enumeration: 0
 ConstructOnLoad: 0
 HandleCompatible: 1
 InferiorClasses: {0×1 cell}
 ContainingPackage: [0×0 meta.package]
 RestrictsSubclassing: 0
 PropertyList: [3×1 meta.property]
 MethodList: [22×1 meta.method]
 EventList: [1×1 meta.event]
 EnumerationMemberList: [0×1 meta.EnumeratedValue]
 SuperclassList: [1×1 meta.class]

The meta.class object property named PropertyList contains an array of
meta.property objects, one for each property defined by the class. For example, the
name of the property associated with the meta.property object in element 1 is:

mc.PropertyList(1).Name

ans =

Date

The meta.class object contains a meta.property object for all properties, including
hidden properties. The properties function returns only public properties.

For a handle class, use the handle findprop method to get the meta.property object
for a specific property.

For example, find the meta.property object for the Category property of the
BasicHandle class.

mp = findprop(BasicHandle,'Category')

mp =

 property with properties:

 Name: 'Category'
 Description: ''
 DetailedDescription: ''
 GetAccess: 'public'

 Get Information About Properties

17-15

 SetAccess: 'public'
 Dependent: 0
 Constant: 0
 Abstract: 0
 Transient: 0
 Hidden: 0
 GetObservable: 0
 SetObservable: 0
 AbortSet: 0
 NonCopyable: 0
 GetMethod: []
 SetMethod: []
 HasDefault: 1
 DefaultValue: 'new'
 DefiningClass: [1×1 meta.class]

The preceding meta.property display shows that a default BasicHandle object
Category property:

• Has public GetAccess and SetAccess
• Has a default value of new

For a list of property attributes, see “Table of Property Attributes” on page 8-9.

How to Index Metaclass Objects

Access other metaclass objects directly from the meta.class object properties. For
example, the statement:

mc = ?containers.Map;

returns a meta.class object:

class(mc)

ans =

meta.class

Referencing the PropertyList meta.class property returns an array with one
meta.property object for each property of the containers.Map class:

class(mc.PropertyList)

17 Information from Class Metadata

17-16

ans =

meta.property

Each array element is a single meta.property object:

mc.Properties(1)

ans =

 [1x1 meta.property]

The Name property of the meta.property object contains a char vector that is the name
of the property:

class(mc.PropertyList(1).Name)

ans =

char

Apply standard MATLAB indexing to access information in metaclass objects.

For example, the meta.class PropertyList property contains an array of
meta.property objects. The following expression accesses the first meta.property
object in this array and returns the first and last (C and t) letters of the char vector
contained in the meta.property Name property.

mc.PropertyList(1).Name([1 end])

ans =

Ct

How to Find Properties with Specific Attributes
This example implements a function that finds properties with specific attribute values.
For example, you can:

• Find objects that define constant properties (Constant attribute set to true).
• Determine what properties are read-only (GetAccess = public, SetAccess =

private).

 Get Information About Properties

17-17

The findAttrValue function returns a cell array of property names that set the
specified attribute.

The findAttrValue function accesses information from metadata using these
techniques:

• If input argument, obj, is a char vector, use the meta.class.fromName static
method to get the meta.class object.

• If input argument, obj, is an object, use the metaclass function to get the
meta.class object.

• Every property has an associated meta.property object. Obtain these objects from
the meta.class PropertyList property.

• Use the handle class findprop method to determine if the requested property
attribute is a valid attribute name. All property attributes are properties of the
meta.property object. The statement, findobj(mp,'PropertyName') determines
whether the meta.property object, mp, has a property called PropertyName.

• Reference meta.property object properties using dynamic field names. For example,
if attrName = 'Constant', then MATLAB converts the expression mp.(attrName)
to mp.Constant

• The optional third argument enables you to specify the value of attributes whose
values are not logical true or false (such as GetAccess and SetAccess).

function cl_out = findAttrValue(obj,attrName,varargin)
 if ischar(obj)
 mc = meta.class.fromName(obj);
 elseif isobject(obj)
 mc = metaclass(obj);
 end
 ii = 0; numb_props = length(mc.PropertyList);
 cl_array = cell(1,numb_props);
 for c = 1:numb_props
 mp = mc.PropertyList(c);
 if isempty (findprop(mp,attrName))
 error('Not a valid attribute name')
 end
 attrValue = mp.(attrName);
 if attrValue
 if islogical(attrValue) || strcmp(varargin{1},attrValue)
 ii = ii + 1;
 cl_array(ii) = {mp.Name};
 end

17 Information from Class Metadata

17-18

 end
 end
 cl_out = cl_array(1:ii);
end

Find Property Attributes

Suppose that you have the following containers.Map object:

mapobj = containers.Map({'rose','bicycle'},{'flower','machine'});

Find properties with private SetAccess:

findAttrValue(mapobj,'SetAccess','private')

ans =

 'Count' 'KeyType' 'ValueType' 'serialization'

Find properties with public GetAccess:

findAttrValue(mapobj,'GetAccess','public')

ans =

 'Count' 'KeyType' 'ValueType'

See Also

Related Examples
• “Find Default Values in Property Metadata” on page 17-20

 See Also

17-19

Find Default Values in Property Metadata
In this section...
“Default Values” on page 17-20
“meta.property Data” on page 17-20

Default Values
Class definitions can specify explicit default values for properties (see “Property Default
Values” on page 8-18). Determine if a class defines an explicit default value for a property
and what the value of the default is from the property meta.property object.

meta.property Data
The meta.class object for a class contains a meta.property object for every property
defined by the class, including properties with private and protected access.

For example, get the meta.class object for the PropertyWithDefault class shown
here:

classdef PropertyWithDefault
 properties
 Date = date
 RandNumber = randi(9)
 end
end

Get an array of meta.property objects from the meta.class object:

mc = ?PropertyWithDefault; % meta.class object
mp = mc.PropertyList; % meta.property array

The second element in the mp array is the meta.property object for the RandNumber
property. Listing the meta.property object shows the information contained in its
properties:

mp(2)

 property with properties:

17 Information from Class Metadata

17-20

 Name: 'RandNumber'
 Description: ''
 DetailedDescription: ''
 GetAccess: 'public'
 SetAccess: 'public'
 Dependent: 0
 Constant: 0
 Abstract: 0
 Transient: 0
 Hidden: 0
 GetObservable: 0
 SetObservable: 0
 AbortSet: 0
 NonCopyable: 0
 GetMethod: []
 SetMethod: []
 HasDefault: 1
 DefaultValue: 5
 DefiningClass: [1×1 meta.class]

Two of the listed meta.property properties provide information on default values:

• HasDefault — true (displayed as 1) if the class specifies a default value for the
property, false if it does not.

• DefaultValue — Contains the default value, when the class defines a default value
for the property. If the default value is an expression, the value of DefaultValue is
the result of evaluating the expression.

For more information on the evaluation of property default values defined by expressions,
see “Evaluation of Expressions in Class Definitions” on page 6-10.

These properties provide a programmatic way to obtain property default values without
opening class definition files. Use these meta.property object properties to obtain
property default values for both built-in classes and classes defined in MATLAB code.

Query Default Value

The procedure for querying a default value involves:

1 Getting the meta.property object for the property whose default value you want to
query.

 Find Default Values in Property Metadata

17-21

2 Testing the logical value of the meta.property HasDefault property to determine
if the property defines a default value. MATLAB returns an error when you query the
DefaultValue property if the class does not define a default value for the property.

3 Obtaining the default value from the meta.property DefaultValue property if the
HasDefault value is true.

Use the ? operator, the metaclass function, or the meta.class.fromName static
method (works with char vector variable) to obtain a meta.class object.

The meta.class object PropertyList contains an array of meta.property objects.
Identify which property corresponds to which meta.property object using the
meta.property Name property.

For example, this class defines properties with default values:

classdef MyDefs
 properties
 Material = 'acrylic'
 InitialValue = 1.0
 end
end

Follow these steps to obtain the default value defined for the Material property. Include
any error checking that is necessary for your application.

1 Get the meta.class object for the class:

mc = ?MyDefs;
2 Get an array of meta.property objects from the meta.class PropertyList

property:

mp = mc.PropertyList;
3 The length of the mp array equals the number of properties. You can use the

meta.property Name property to find the property of interest:

for k = 1:length(mp)
 if (strcmp(mp(k).Name,'Material')
 ...

4 Before querying the default value of the Material property, test the HasDefault
meta.property to determine if MyClass defines a default property for this
property:

17 Information from Class Metadata

17-22

if mp(k).HasDefault
 dv = mp(k).DefaultValue;
 end

The DefaultValue property is read-only. Changing the default value in the class
definition changes the value of DefaultValue property. You can query the default value
of a property regardless of its access settings.

Abstract and dynamic properties cannot define default values. Therefore, MATLAB
returns an error if you attempt to query the default value of properties with these
attributes. Always test the logical value of the meta.property HasDefault property
before querying the DefaultValue property to avoid generating an error.

Default Values Defined as Expressions

Class definitions can define property default values as MATLAB expressions (see
“Evaluation of Expressions in Class Definitions” on page 6-10 for more information).
MATLAB evaluates these expressions the first time the default value is needed, such as
the first time you create an instance of the class.

Querying the meta.property DefaultValue property causes MATLAB to evaluate a
default value expression, if it had not yet been evaluated. Therefore, querying a property
default value can return an error or warning if errors or warnings occur when MATLAB
evaluates the expression. See “Property with Expression That Errors” on page 17-24 for
an example.

Property with No Explicit Default Value

MyClass does not explicitly define a default value for the Foo property:

classdef MyFoo
 properties
 Foo
 end
end

The meta.property instance for property Foo has a value of false for HasDefault.
Because the class does not explicitly define a default value for Foo, attempting to access
the DefaultValue property causes an error:

mc = ?MyFoo;
mp = mc.PropertyList(1);
mp.HasDefault

 Find Default Values in Property Metadata

17-23

ans =

 0

dv = mp.DefaultValue;

No default value has been defined for property Foo

Abstract Property

MyClass defines the Foo property as Abstract:

classdef MyAbst
 properties (Abstract)
 Foo
 end
end

The meta.property instance for property Foo has a value of false for its HasDefault
property because you cannot define a default value for an Abstract property. Attempting
to access DefaultValue causes an error:

mc = ?MyAbst;
mp = mc.PropertyList(1);
mp.HasDefault

ans =

 0

dv = mp.DefaultValue;

Property Foo is abstract and therefore cannot have a default value.

Property with Expression That Errors

MyPropEr defines the Foo property default value as an expression that errors when
evaluated.

classdef MyPropEr
 properties
 Foo = sin(pie/2)
 end
end

17 Information from Class Metadata

17-24

The meta.property object for property Foo has a value of true for its HasDefault
property because Foo does have a default value:

sin(pie/2)

However, this expression returns an error (pie is a function that creates a pie graph, not
the value pi).

mc = ?MyPropEr;
mp = mc.PropertyList(1);
mp.HasDefault

ans =

 1

dv = mp.DefaultValue;

Error using pie (line 29)
Not enough input arguments.

Querying the default value causes the evaluation of the expression and returns the error.

Property With Explicitly Defined Default Value of Empty

MyEmptyProp assigns a default of [] (empty double) to the Foo property:

classdef MyEmptyProp
 properties
 Foo = []
 end
end

The meta.property object for property Foo has a value of true for its HasDefault
property. Accessing DefaultValue returns the value []:

mc = ?MyEmptyProp;
mp = mc.PropertyList(1);
mp.HasDefault

ans =

 1

dv = mp.DefaultValue;

 Find Default Values in Property Metadata

17-25

dv =

 []

See Also

Related Examples
• “Get Information About Properties” on page 17-14

17 Information from Class Metadata

17-26

Specialize Object Behavior

• “Methods That Modify Default Behavior” on page 18-2
• “Number of Arguments for subsref and subsasgn” on page 18-6
• “Modify nargout and nargin for Indexing Methods” on page 18-9
• “Concatenation Methods” on page 18-11
• “Object Converters” on page 18-12
• “Object Array Indexing” on page 18-15
• “Code Patterns for subsref and subsasgn Methods” on page 18-21
• “Indexed Reference” on page 18-28
• “Indexed Assignment” on page 18-31
• “end as Object Index” on page 18-35
• “Objects in Index Expressions” on page 18-37
• “Class with Modified Indexing” on page 18-39
• “Operator Overloading” on page 18-47

18

Methods That Modify Default Behavior
In this section...
“How to Customize Class Behavior” on page 18-2
“Which Methods Control Which Behaviors” on page 18-2
“Overload Functions and Override Methods” on page 18-4

How to Customize Class Behavior
There are functions that MATLAB calls implicitly when you perform certain actions with
objects. For example, a statement like [B(1);A(3)] involves indexed reference and
vertical concatenation.

You can change how user-defined objects behave by defining methods that control specific
behaviors. To change a behavior, implement the appropriate method with the name and
signature of the MATLAB function.

Which Methods Control Which Behaviors
The following table lists the methods to implement for your class and describes the
behaviors that they control.

Class Method to Implement Description
Concatenating Objects
cat, horzcat, and vertcat Customize behavior when concatenating objects

See “Subclasses of Built-In Types with Properties”
on page 12-68

Creating Empty Arrays
empty Create empty arrays of the specified class. See

“Empty Arrays” on page 10-8
Displaying Objects

18 Specialize Object Behavior

18-2

Class Method to Implement Description
disp

display

Called when you enter disp(obj) on the
command line

Called by statements that are not terminated by
semicolons. disp is often used to implement
display methods.

See “Overloading the disp Function” on page 19-
43

See “Custom Display Interface” on page 19-2
Converting Objects to Other Classes
converters like double and char Convert an object to a MATLAB built-in class

See “The Character Converter” on page 20-16
and “The Double Converter” on page 20-15

Indexing Objects
subsref and subsasgn Enables you to create nonstandard indexed

reference and indexed assignment

See “Object Array Indexing” on page 18-15
end Supports end syntax in indexing expressions

using an object; e.g., A(1:end)

See “end as Object Index” on page 18-35
numel Determine the number of elements in an array

See “Modify nargout and nargin for Indexing
Methods” on page 18-9

numArgumentsFromSubscript Overload to specify the number of values to return
from indexing expressions.

See “Number of Arguments for subsref and
subsasgn” on page 18-6

 Methods That Modify Default Behavior

18-3

Class Method to Implement Description
size Determine the dimensions of an array

See “Use of size and numel with Classes” on page
12-77

subsindex Support using an object in indexing expressions

See “Objects in Index Expressions” on page 18-
37

Saving and Loading Objects
loadobj and saveobj Customize behavior when loading and saving

objects

See “Object Save and Load”
Reshape and Rearrange
permute Rearrange dimensions of N-D array
transpose Transpose vector or matrix
ctranspose Complex conjugate transpose
reshape Reshape array
Determine Size and Shape
isscalar Determine if the input is a scalar
isvector Determine if the input is a vector
ismatrix Determine if the input is a matrix
isempty Determine if the input is empty

Overload Functions and Override Methods
Overloading and overriding are terms that describe techniques for customizing class
behavior. Here is how we use these terms in MATLAB.

Overloading

Overloading means that there is more than one function or method having the same name
within the same scope. MATLAB dispatches to a particular function or method based on
the dominant argument. For example, the timeseries class overloads the MATLAB plot

18 Specialize Object Behavior

18-4

function. When you call plot with a timeseries object as an input argument, MATLAB
calls the timeseries class method named plot.

To call the nonoverloaded function, use the builtin function.

Overriding

Overriding means redefining a method inherited from a superclass. MATLAB dispatches
to the most specific version of the method. That is, if the dominant argument is an object
of the subclass, then MATLAB calls the subclass method.

To control class dominance, use the InferiorClasses attribute.

See Also

Related Examples
• “Overload Functions in Class Definitions” on page 9-35
• “Object Precedence in Method Invocation” on page 9-48
• “Operator Overloading” on page 18-47

 See Also

18-5

Number of Arguments for subsref and subsasgn
In this section...
“How MATLAB Determines Number of Arguments” on page 18-6
“Syntax for subsref, and subsasgn Methods” on page 18-8

How MATLAB Determines Number of Arguments
MATLAB calls subsref or subsasgn to determine the result of executing code that
involves indexed reference or assignment. The number of elements referenced or
assigned by an indexing operation determines the number of arguments MATLAB uses to
call subsref and subsasgn. That is, the indexing code determines the number of
arguments that MATLAB:

• Returns from the call to subsref
• Passes to the call to subsasgn

Therefore, the indexing code determines the value of nargout for the call to subsref
and the value of nargin for the call to subsasgn.

For example, consider the ValuesArray class.

classdef ValuesArray
 properties
 Values
 end
 methods
 function obj = ValuesArray(v)
 if nargin > 0
 obj.Values = v;
 end
 end
 end
end

Create an array of 10 ValuesArray objects.

l = ValuesArray.empty;
for k = 1:10
 l(k) = ValuesArray(k);
end

18 Specialize Object Behavior

18-6

This subscripted reference returns a comma-separated list of three elements. For this
statement, the value of nargout in subsref is 3.

l(1:3).Values

ans =

 1

ans =

 2

ans =

 3

The left side of a subscripted assignment statement affects the number of input
arguments that MATLAB uses to call subsasgn. This subscripted assignment assigns
three values to the three elements added to the array. For this assignment, the value of
nargin within subsasgn is 5 (the object, the indexing substructure, and the three values
to assign).

[l(11:13).Values] = l(1:3).Values

l =

 1x13 ValuesArray array with properties:

 Values

If the number of right-side arguments cannot satisfy the number of left-side arguments,
MATLAB returns an error:

[l(11:13).Values] = l(1).Values

Insufficient number of outputs from right hand side of equal sign to satisfy
assignment.

 Number of Arguments for subsref and subsasgn

18-7

Syntax for subsref, and subsasgn Methods
If a class overloads subsref to support either '{}', '.', or both types of indexing, and
the operation returns more than one value, overload subsref to return multiple values
using varargout:

function varargout = subsref(A,S)
 ...
end

If a class overloads subsasgn to support either '{}', '.', or both types of indexing, and
the operation assigns more than one value, overload subsasgn to accept multiple values
using varargin:

function A = subsagn(A,S,varargin)
 ...
end

See Also

More About
• “Modify nargout and nargin for Indexing Methods” on page 18-9
• “Comma-Separated Lists”

18 Specialize Object Behavior

18-8

Modify nargout and nargin for Indexing Methods
In this section...
“When to Modify Number of Arguments” on page 18-9
“How to Modify Number of Arguments” on page 18-9

When to Modify Number of Arguments
By default, the number of values referenced by an indexing operation determines how
many output arguments MATLAB uses to call subsref. Similarly, the number of values to
assign in an indexed assignment operation determines how many input arguments
MATLAB uses to call subsasgn.

If your class design requires that indexing operations return or assign a different number
of values than the number defined by the indexing operation, use
numArgumentsFromSubscript to specify the required number.
numArgumentsFromSubscript provides control over nargout for subsref and
nargin for subsasgn.

If your class uses numArgumentsFromSubscript, implement subsref and subsasgn
methods to define the actual values returned or assigned by indexing operations.

Before MATLAB release R2015b, MATLAB produced different results for some indexing
expressions that return or assign to a comma-separated list. Use
numArgumentsFromSubscript to support code that relies on the behavior of previous
releases. Also, now you can overload numArgumentsFromSubscript instead of numel
to achieve specific results without redefining how numel works.

How to Modify Number of Arguments
When a class overloads numArgumentsFromSubscript, MATLAB calls this method
instead of numel to compute the number of arguments expected for subsref nargout
and subsasgn nargin.

If classes do not overload numArgumentsFromSubscript, MATLAB calls numel to
compute the values of nargout or nargin.

MATLAB calls numArgumentsFromSubscript with three input arguments:

 Modify nargout and nargin for Indexing Methods

18-9

function n = numArgumentsFromSubscript(obj,s,indexingContext)
 ...
end

Input Argument Description
obj Object whose subsref or subsasgn method is called
s Indexing structure that contains the indexing type and indices used

in the operation
indexingContex
t

Context in which the indexing operation occurs: indexed reference
used as a statement, index reference used as a function argument,
and indexed assignment

MATLAB uses the value returned by numArgumentsFromSubscript for indexed
reference and assignment. Determine the context in which the indexing operation
executes by testing the value of indexingContext in your implementation of
numArgumentsFromSubscript. For example, test for any or all the possible indexing
contexts.
function n = numArgumentsFromSubscript(obj,~,indexingContext)
 switch indexingContext
 case matlab.mixin.util.IndexingContext.Statement
 n = ...; % nargout for indexed reference used as statement
 case matlab.mixin.util.IndexingContext.Expression
 n = ...; % nargout for indexed reference used as function argument
 case matlab.mixin.util.IndexingContext.Assignment
 n = ...; % nargin for indexed assignment
 end
end

For more information and examples, see numArgumentsFromSubscript.

Note For MATLAB version R2015b and later releases, overload
numArgumentsFromSubscript instead of numel to customize indexing for your class.

See Also

More About
• “Number of Arguments for subsref and subsasgn” on page 18-6
• “Use of size and numel with Classes” on page 12-77

18 Specialize Object Behavior

18-10

Concatenation Methods
In this section...
“Default Concatenation” on page 18-11
“Methods to Overload” on page 18-11

Default Concatenation
You can concatenate objects into arrays. For example, suppose that you have three
instances of the class MyClass, obj1, obj2, obj3. You can form arrays of these objects
using brackets. Horizontal concatenation calls horzcat:

HorArray = [obj1,obj2,obj3];

HorArray is a 1-by-3 array of class MyClass. You can concatenate the objects along the
vertical dimension, which calls vertcat:

VertArray = [obj1;obj2;obj3]

VertArray is a 3-by-1 array of class MyClass. To concatenate arrays along different
dimensions, use the cat function. For example:

ndArray = cat(3,HorArray,HorArray);

ndArray is a 1-by-3-by-2 array.

Methods to Overload
Overload horzcat, vertcat, and cat to produce specialized behaviors in your class.
Overload both horzcat and vertcat whenever you want to modify object concatenation
because MATLAB uses both functions for any concatenation operation.

See Also

Related Examples
• “Subclasses of Built-In Types with Properties” on page 12-68

 Concatenation Methods

18-11

Object Converters
In this section...
“Why Implement Converters” on page 18-12
“Converters for Package Classes” on page 18-12
“Converters and Subscripted Assignment” on page 18-13

Why Implement Converters
You can convert an object of one class to an object of another class. A converter method
has the same name as the class it converts to, such as char or double. Think of a
converter method as an overloaded constructor method of another class. The converter
takes an instance of its own class and returns an object of a different class.

Converters enable you to:

• Use methods defined for another class
• Ensure that expressions involving objects of mixed class types execute properly
• Control how instances are interpreted in other contexts

Suppose that you define a polynomial class. If you create a double method for the
polynomial class, you can use it to call other functions that require inputs of type
double.

p = polynomial(...);
dp = double(p);
roots(dp)

p is a polynomial object, double is a method of the polynomial class, and roots is a
standard MATLAB function whose input arguments are the coefficients of a polynomial.

Converters for Package Classes
Classes defined in packages can have names that are a dot-separated list of names. The
last name is a class and preceding names are packages. Name the conversion methods
using the package qualifiers in the method names. For example, a conversion method to
convert objects of MyClass to objects of the PkgName.PkgClass class uses this method
name:

18 Specialize Object Behavior

18-12

classdef MyClass
 ...
 methods
 function objPkgClass = PkgName.PkgClass(objMyclass)
 ...
 end
 end
end

You cannot define a converter method that uses dots in the name in a separate file. Define
package-class converters in the classdef file.

Converters and Subscripted Assignment
When you make a subscripted assignment statement like:

A(1) = myobj;

MATLAB compares the class of the Right-Side variable to the class of the Left-Side
variable. If the classes are different, MATLAB attempts to convert the Right-Side variable
to the class of the Left-Side variable. To do this conversion, MATLAB first searches for a
method of the Right-Side class that has the same name as the Left-Side class. Such a
method is a converter method, which is similar to a typecast operation in other
languages.

If the Right-Side class does not define a method to convert from the Right-Side class to
the Left-Side class, MATLAB calls the Left-Side class constructor. passing it the Right-
Side variable.

For example, suppose that you make the following assignments:

A(1) = objA; % Object of class ClassA
A(2) = objB; % Object of class ClassB

MATLAB attempts to call a method of ClassB named ClassA. If no such converter
method exists, MATLAB software calls the ClassA constructor, passing objB as an
argument. If the ClassA constructor cannot accept objB as an argument, then MATLAB
returns an error.

Use cell arrays to store objects of different classes.

 Object Converters

18-13

See Also

Related Examples
• “Converter Methods” on page 10-21
• “The Double Converter” on page 20-15

18 Specialize Object Behavior

18-14

Object Array Indexing
In this section...
“Default Indexed Reference and Assignment” on page 18-15
“What You Can Modify” on page 18-16
“When to Modify Indexing Behavior” on page 18-17
“Built-In subsref and subsasgn Called in Methods” on page 18-17
“Avoid Overriding Access Attributes” on page 18-19

Default Indexed Reference and Assignment
MATLAB classes support object array indexing by default. Many class designs require no
modification to this behavior.

Arrays enable you to reference and assign elements of the array using a subscripted
notation. This notation specifies the indices of specific array elements. For example,
suppose that you create two arrays of numbers (using randi and concatenation).

Create a 3-by-4 array of integers from 1 through 9:

A = randi(9,3,4)

A =

 4 8 5 7
 4 2 6 3
 7 5 7 7

Create a 1-by-3 array of the numbers 3, 6, 9:

B = [3 6 9];

Reference and assign elements of either array using index values in parentheses:

B(2) = A(3,4);
B

B =
 3 7 9

When you execute a statement that involves indexed reference:

 Object Array Indexing

18-15

C = A(3,4);

MATLAB calls the built-in subsref function to determine how to interpret the statement.
Similarly, if you execute a statement that involves indexed assignment:

C(4) = 7;

MATLAB calls the built-in subsasgn function to determine how to interpret the
statement.

The MATLAB default subsref and subsasgn functions also work with user-defined
objects. For example, create an array of objects of the same class:

for k=1:3
 objArray(k) = MyClass;
end

Referencing the second element in the object array, objArray, returns the object
constructed when k = 2:

D = objArray(2);
class(D)

ans =

MyClass

You can assign an object to an array of objects of the same class, or an uninitialized
variable:

newArray(3,4) = D;

Arrays of objects behave much like numeric arrays in MATLAB. You do not need to
implement any special methods to provide standard array behavior with your class.

For general information about array indexing, see “Array Indexing”.

What You Can Modify
You can modify your class indexed reference and/or assignment behavior by implementing
class methods called subsref and subsasgn. For syntax description, see their respective
reference pages.

18 Specialize Object Behavior

18-16

Once you add a subsref or subsasgn method to your class, then MATLAB calls only the
class method, not the built-in function. Therefore, your class method must implement all
the indexed reference and assignment operations that you want your class to support.
These operations include:

• Dot notation calls to class methods
• Dot notation reference and assignment involving properties
• Any indexing using parentheses '()'
• Any indexing using braces '{}'

Implementing subsref and subsasgn methods gives you complete control over the
interpretation of indexing expressions for objects of your class. Implementing the extent
of behaviors that MATLAB provides by default is nontrivial.

When to Modify Indexing Behavior
Default indexing for object arrays and dot notation for access to properties and methods
enables user-defined objects to behave like built-in classes. For example, suppose that you
define a class with a property called Data that contains an array of numeric data.

This statement:

obj.Data(2,3)

Returns the value contained in the second row, third column of the array. If you have an
array of objects, use an expression like:

objArray(3).Data(2,3)

This statement returns the value contained in the second row, third column of the third
element in the array.

Modify the default indexing behavior when your class design requires behavior that is
different from MATLAB default behavior.

Built-In subsref and subsasgn Called in Methods
MATLAB does not call class-defined subsref or subsasgn methods within the
overloaded methods. Within class methods, MATLAB always calls the built-in subsref
and subsasgn functions. This behavior occurs within the class-defined subsref and
subsasgn methods too.

 Object Array Indexing

18-17

For example, within a class method, this dot reference:

obj.Prop

calls the built-in subsref function. To call the class-defined subsref method, use:

subsref(obj,substruct('.','Prop'))

Whenever a method requires the functionality of the class-defined subsref or subsasgn
method, the class must call the overloaded methods as functions. Do not use the
operators, '()', '{}', or '.'.

For example, suppose that you define a class to represent polynomial. This class has a
subsref method that evaluates the polynomial with the value of the independent variable
equal to the subscript. Assume that this statement defines the polynomial with its
coefficients:

p = polynom([1 0 -2 -5]);

The MATLAB expression for the resulting polynomial is:

x^3 - 2*x - 5

This subscripted expression returns the value of the polynomial at x = 3:

p(3)

ans =
 16

Suppose that you want to use this feature in another class method. To do so, call the
subsref function directly. The evalEqual method accepts two polynom objects and a
value at which to evaluate the polynomials:

methods
 function ToF = evalEqual(p1,p2,x)
 % Create arguments for subsref
 subs.type = '()';
 subs.subs = {x};
 % Need to call subsref explicitly
 y1 = subsref(p1,subs);
 y2 = subsref(p2,subs);
 if y1 == y2
 ToF = true;
 else

18 Specialize Object Behavior

18-18

 ToF = false;
 end
 end
end

This behavior enables you to use standard MATLAB indexing to implement specialized
behaviors. See “Class with Modified Indexing” on page 18-39 for examples of how to use
both built-in and class-modified indexing.

Avoid Overriding Access Attributes
Because subsref is a class method, it has access to private class members. Avoid
inadvertently giving access to private methods and properties as you handle various types
of reference. Consider this subsref method defined for a class having private properties,
x and y:

classdef MyPlot
 properties (Access = private)
 x
 y
 end
 properties
 Maximum
 Minimum
 Average
 end
 methods
 function obj = MyPlot(x,y)
 obj.x = x;
 obj.y = y;
 obj.Maximum = max(y);
 obj.Minimum = min(y);
 obj.Average = mean(y);
 end
 function B = subsref(A,S)
 switch S(1).type
 case '.'
 switch S(1).subs
 case 'plot'
 % Reference to A.x and A.y call built-in subsref
 B = plot(A.x,A.y);
 otherwise
 % Enable dot notation for all properties and methods
 B = A.(S.subs);
 end
 end
 end
 end
end

 Object Array Indexing

18-19

This subsref enables the use of dot notation to create a plot using the name 'plot'.
The statement:

obj = MyPlot(1:10,1:10);
h = obj.plot;

calls the plot function and returns the handle to the graphics object.

You do not need to code each method and property name. The otherwise code in the
inner switch block manages any name reference that you do not explicitly specify in
case statements. However, using this technique exposes any private and protected class
members via dot notation. For example, you can reference the private property, x, with
this statement:

obj.x

ans =

 1 2 3 4 5 6 7 8 9 10

The same issue applies to writing a subsasgn method that enables assignment to private
or protected properties. Your subsref and subsasgn methods might need to code each
specific property and method name explicitly to avoid violating the class design.

See Also

Related Examples
• “Code Patterns for subsref and subsasgn Methods” on page 18-21
• “Indexed Reference” on page 18-28
• “Indexed Assignment” on page 18-31

18 Specialize Object Behavior

18-20

Code Patterns for subsref and subsasgn Methods
In this section...
“Customize Indexed Reference and Assignment” on page 18-21
“Syntax for subsref and subsasgn Methods” on page 18-21
“Indexing Structure Describes Indexing Expressions” on page 18-22
“Values of the Indexing Structure” on page 18-23
“Typical Patterns for Indexing Methods” on page 18-23

Customize Indexed Reference and Assignment
User-defined classes have the same indexing behaviors as that of built-in classes. Classes
can customize indexing operations by overloading the functions that MATLAB calls to
evaluate indexing expressions. Overload the subsref and subsasgn functions when you
want to define special behaviors for indexed reference and assignment.

For an overview of object indexing, see “Object Array Indexing” on page 18-15.

Syntax for subsref and subsasgn Methods
MATLAB calls the subsref and subsasgn methods of your class with these arguments.

Method Input Output
b = subsref(obj,s) • obj — Object or object

array used in indexing
expression

• s — Indexing structure

b — Result of indexing
expression

obj =
subsasgn(obj,s,b)

• obj — Object or object
array used in indexing
expression

• s — Indexing structure
• b — Value being assigned

obj — Object or object
array after assignment

Modifying Number of Arguments

If your class design requires that indexing operations return or assign a different number
of values than the number defined by the default indexing operation, overload the

 Code Patterns for subsref and subsasgn Methods

18-21

numArgumentsFromSubscript function to control nargout for subsref and nargin
for subsasgn. For more information and examples, see numArgumentsFromSubscript.

Indexing Structure Describes Indexing Expressions
The indexing structure contains information that describes the indexing expression. Class
methods use the information in the indexing structure to evaluate the expression and
implement custom behavior.

For example, the CustomIndex class defines a property that you can use in indexing
expressions.

classdef CustomIndex
 properties
 DataArray
 end
end

Create an object and assign a 5-by-5 matrix created by the magic function to the
DataArray property.

a = CustomIndex;
a.DataArray = magic(5);

This subscripted reference expression returns the first row of the 5-by-5 matrix.

a.DataArray(1,:)

ans =

 17 24 1 8 15

This expression assigns new values to the first row of the array stored in the DataArray
property.

a.DataArray(1,:) = [1 2 3 4 5];

This assignment statement uses:

• A '.' type reference
• A property name following the dot (that is, DataArray)
• A range of indices (1,:) within parentheses

18 Specialize Object Behavior

18-22

The indexing structure contains this information in the type and subs fields.

Values of the Indexing Structure
When executing an indexing expression, MATLAB calls the class subsref or subsasgn
method, if the class overloads these functions. One of the arguments passed to the
method is the indexing structure. The indexing structure has two fields:

• type — One of the three possible indexing types: '.', '()', '{}'
• subs — A char vector with the property name or cell array of the indices used in the

expression, including : and end.

If the indexing expression is a compound expression, then MATLAB passes an array of
structures, one struct for each level of indexing. For example, in this expression:

a.DataArray(1,:)

the indexing structure array S has these values:

• S(1).type is set to '.', indicating that the first indexing operation is a dot.
• s(1).subs is set to the property name, 'DataArray'

The second level of indexing is in the second element of the indexing structure:

• S(2).types is set to '()' indicating the second indexing operation is parentheses
indexing

• S(2).subs is set to a cell array containing the indices {[1],[:]}

Typical Patterns for Indexing Methods
To overload the subsref and subasgn functions:

• Determine the full indexing expression using the types and subs fields of the
indexing structure.

• Implement the specialized behaviors for the indexing operations supported by the
class.

• Return the appropriate values or modified objects in response to the call by MATLAB.

A switch statement is a convenient way to detect the first level of indexing. There are
three types of indexing—dot, parentheses, and braces. Each case block in the switch

 Code Patterns for subsref and subsasgn Methods

18-23

statement implements all indexing expressions that begin with that first-level type of
indexing.

The methods must implement all indexing expressions that the class supports. If you do
not customize a particular type of indexing, call the built-in function to handle that
expression.

Use the length of the indexing structure array and indexing type define conditional
statements for compound indexing expressions.

Code Framework for subsref Method

The following framework for the subsref method shows how to use information in the
indexing structure in conditional statements. Your application can involve other
expression not shown here.
function varargout = subsref(obj,s)
 switch s(1).type
 case '.'
 if length(s) == 1
 % Implement obj.PropertyName
 ...
 elseif length(s) == 2 && strcmp(s(2).type,'()')
 % Implement obj.PropertyName(indices)
 ...
 else
 [varargout{1:nargout}] = builtin('subsref',obj,s);
 end
 case '()'
 if length(s) == 1
 % Implement obj(indices)
 ...
 elseif length(s) == 2 && strcmp(s(2).type,'.')
 % Implement obj(ind).PropertyName
 ...
 elseif length(s) == 3 && strcmp(s(2).type,'.') && strcmp(s(3).type,'()')
 % Implement obj(indices).PropertyName(indices)
 ...
 else
 % Use built-in for any other expression
 [varargout{1:nargout}] = builtin('subsref',obj,s);
 end
 case '{}'
 if length(s) == 1
 % Implement obj{indices}
 ...
 elseif length(s) == 2 && strcmp(s(2).type,'.')
 % Implement obj{indices}.PropertyName
 ...
 else
 % Use built-in for any other expression

18 Specialize Object Behavior

18-24

 [varargout{1:nargout}] = builtin('subsref',obj,s);
 end
 otherwise
 error('Not a valid indexing expression')
 end

Using varargout for the returned value enables the method to work with object arrays.
For example, suppose that you want to support the return of a comma-separated list with
an expression like this one:

[x1,...xn] = objArray.PropertyName(Indices)

This expression results in a two-element indexing structure array. The first-level type is
dot ('.') and the second level is parentheses ('()'). Build the varargout cell array
with each value in the array.

case '.'
 ...
 if length(s)==2 && strcmp(s(2).type,'()')
 prop = s(1).subs; % Property name
 n = numel(obj); % Number of elements in array
 varargout = cell(1,n); % Preallocate cell array
 for k = 1:n
 varargout{k} = obj(k).(prop).(s(2).subs);
 end
 end
 ...
end

subsasgn Pattern

The following framework for the subsasgn method shows how to use the indexing
structure in conditional statements that implement assignment operations.
function obj = subsasgn(obj,s,varargin)

 % Allow subscripted assignment to uninitialized variable
 if isequal(obj,[])
 % obj = ClassName.empty;
 end

 switch s(1).type
 case '.'
 if length(s) == 1
 % Implement obj.PropertyName = varargin{:};
 ...
 elseif length(s) == 2 && strcmp(s(2).type,'()')
 % Implement obj.PropertyName(indices) = varargin{:};
 ...

 Code Patterns for subsref and subsasgn Methods

18-25

 else
 % Call built-in for any other case
 obj = builtin('subsasgn',obj,s,varargin{:});
 end
 case '()'
 if length(s) == 1
 % Implement obj(indices) = varargin{:};
 elseif length(s) == 2 && strcmp(s(2).type,'.')
 % Implement obj(indices).PropertyName = varargin{:};
 ...
 elseif length(s) == 3 && strcmp(s(2).type,'.') && strcmp(s(3).type,'()')
 % Implement obj(indices).PropertyName(indices) = varargin{:};
 ...
 else
 % Use built-in for any other expression
 obj = builtin('subsasgn',obj,s,varargin{:});
 end
 case '{}'
 if length(s) == 1
 % Implement obj{indices} = varargin{:}
 ...
 elseif length(s) == 2 && strcmp(s(2).type,'.')
 % Implement obj{indices}.PropertyName = varargin{:}
 ...
 % Use built-in for any other expression
 obj = builtin('subsasgn',obj,s,varargin{:});
 end
 otherwise
 error('Not a valid indexing expression')
 end
end

Using varargin for the right-side value of the assignment statement enables the method
to work with object arrays. For example, suppose that you want to support the assignment
of a comma-separated list with an expression like this one:

C = {'one';'two';'three'};
[objArray.PropertyName] = C{:}

This expression results in an indexing structure with the dot type ('.') indexing The cell
array C on the right side of the assignment statement produces a comma-separated list.
This code assigns one list item to each property in the object array.

case '.'
 if length(s)==1
 prop = s(1).subs; % Property name
 n = numel(obj); % Number of elements in array
 for k = 1:n
 obj(k).(prop) = varargin{k};
 end

18 Specialize Object Behavior

18-26

 end
end

See Also

Related Examples
• “Class with Modified Indexing” on page 18-39
• “Representing Hardware with Classes” on page 12-83
• “Subclasses of Built-In Types with Properties” on page 12-68

 See Also

18-27

Indexed Reference
In this section...
“How Indexed Reference Works” on page 18-28
“Compound Indexed References” on page 18-29

How Indexed Reference Works
Object indexed references are in three forms — parentheses, braces, and dot-name:

A(I)
A{I}
A.name

Each of these statements results in a call by MATLAB to the subsref of class A, or a call
to the built-in subsasgn function if the class of A does not implement a subsasgn
method.

MATLAB passes two arguments to subsref and requires subsref to return the result of
the indexed reference:

B = subsref(A,S)

The first argument is the object being referenced, A. The second argument, S, is a
substruct with two fields:

• S.type is a char vector containing '()', '{}', or '.' specifying the indexing type
used.

• S.subs is a cell array or char vector containing the actual index or name. A colon
used as an index is passed in the cell array as the colon character ':'. Ranges
specified using a colon (e.g., 2:5) are expanded to 2 3 4 5.

For example, the expression:

A(1:4,:)

Causes MATLAB to call subsref(A,S), where S is a 1-by-1 structure with a two-element
cell array. The cell array contains the numbers 1, 2, 3, 4, and the colon character :.

S.type = '()'
S.subs = {1:4,':'}

18 Specialize Object Behavior

18-28

Returning the contents of each cell of S.subs gives the index values for the first
dimension and a char vector ':' for the second dimension:

S.subs{:}

ans =

 1 2 3 4

ans =

:

The default subsref returns all array elements in rows 1 through 4 and all the columns
in the array.

Similarly, this expression:

A{1:4}

Uses a cell array containing the numbers 1, 2, 3, 4.

S.type ='{}'
S.subs = {1:4}

The default subsref returns the contents of all cell array elements in rows 1 through 4
and all the columns in the array.

This expression:

A.Name

Calls subsref(A,S), where the struct S has these values:

S.type = '.'
S.subs = 'Name'

Compound Indexed References
These simple calls are combined for more complicated indexing expressions. In such
cases, length(S) is the number of indexing levels. For example,

A(1,2).PropertyName(1:4)

calls subsref(A,S), where S is a 3-by-1 array of structs with the values:

 Indexed Reference

18-29

S(1).type = '()' S(2).type = '.' S(3).type = '()'
S(1).subs = {1,2} S(2).subs = 'PropertyName' S(3).subs = {1:4}

See Also

Related Examples
• “Indexed Assignment” on page 18-31
• “Number of Arguments for subsref and subsasgn” on page 18-6
• “Modify nargout and nargin for Indexing Methods” on page 18-9
• “Code Patterns for subsref and subsasgn Methods” on page 18-21

18 Specialize Object Behavior

18-30

Indexed Assignment
In this section...
“How Indexed Assignment Works” on page 18-31
“Indexed Assignment to Objects” on page 18-33
“Compound Indexed Assignments” on page 18-33

How Indexed Assignment Works
Object indexed assignments are in three forms — parentheses, braces, and dot-name:

A(I) = B
A{I} = B
A.name = B

Each of these statements results in a call by MATLAB to the subsasgn method of class A,
or a call to the built-in subsasgn function if the class of A does not implement a
subsasgn method.

MATLAB passes three arguments to subsasgn and requires subsasgn to return the
result of the assignment:

A = subsasgn(A,S,B)

The first argument, A, is the object being assigned the value in the third argument B.

The second argument is the indexing structure, substruct. S has two fields:

• S.type is a char vector containing '()', '{}', or '.' specifying the indexing type
used.

• S.subs is a cell array or character array containing the actual indices or field name. A
colon used as an index is passed in the cell array as the character ':'. Ranges
specified using a colon (e.g., 2:5) are expanded to 2 3 4 5.

For example, the assignment statement:

A(2,3) = B;

generates a call to subsasgn:

A = subsasgn(A,S,B)

 Indexed Assignment

18-31

S contains:

S.type = '()'
S.subs = {2,3}

The built-in subsasgn:

• Determines the class of A. If B is not the same class as A, then MATLAB tries to
construct an object of the same class as A using B as an input argument. If this
attempt fails, MATLAB returns an error.

• If A and B are, or can be made, into the same class, then MATLAB assigns the value of
B to the array element at row 2, column 3.

• If A does not exist before you execute the assignment statement, then MATLAB
initializes the five array elements that come before A(2,3) with default objects of
class B.

Similarly, this expression

A{2,3} = B

Uses these values for S:

S.type ='{}'
S.subs = {2,3}

The built-in subsasgn:

• Assigns B to the cell array element at row 2, column 3.
• If A does not exist before you execute the assignment statement, MATLAB initializes

the five cells that come before A(2,3) with []. The result is a 2-by-3 cell array.

This expression:

A.Name = B

Calls A = subsasgn(A,S,B) where the struct S has these values:

S.type = '.'
S.subs = 'Name'

The built-in subsasgn:

• Assigns B to the struct field Name.

18 Specialize Object Behavior

18-32

• If A does not exist before you execute the assignment statement, MATLAB creates a
struct variable, A with field Name and assigns the value of B to this field location.

• If struct A exists, but has no field Name, then MATLAB adds the field Name and
assigns the value of B to the new field location.

• If struct A exists and has a Name field, then MATLAB assigns the value of B to Name.

You can redefine all or some of these assignment behaviors by implementing a subsasgn
method for your class.

Indexed Assignment to Objects
If A is an object, this expression:

A.Name = B

Calls A = subsasgn(A,S,B) where, S has these values:

S.type = '.'
S.subs = 'Name'

The default subsasgn:

• Attempts to assign B to the Name property.
• If the class of A does not have a Name property, MATLAB returns an error.
• If the Name property has restricted access (private or protected), MATLAB

determines if the assignment is allowed based on the context in which the assignment
is made.

• If the class of A defines a set method for property Name, MATLAB calls the set method.
• MATLAB applies all other property attributes before determining whether to assigning

B to the property Name.

Compound Indexed Assignments
These simple calls are combined for more complicated indexing expressions. In such
cases, length(S) is the number of indexing levels. For example,

A(1,2).PropertyName(1:4) = B

calls subsasgn(A,S,B), where S is a 3-by-1 array of structures with the values:

 Indexed Assignment

18-33

S(1).type = '()' S(2).type = '.' S(3).type = '()'
S(1).subs = {1,2} S(2).subs = 'PropertyName' S(3).subs = {1:4}

See Also

Related Examples
• “Indexed Reference” on page 18-28
• “Number of Arguments for subsref and subsasgn” on page 18-6
• “Modify nargout and nargin for Indexing Methods” on page 18-9
• “Code Patterns for subsref and subsasgn Methods” on page 18-21

18 Specialize Object Behavior

18-34

end as Object Index
In this section...
“Define end Indexing for an Object” on page 18-35
“The end Method” on page 18-36

Define end Indexing for an Object
When you use end in an object indexing expression, such as A(4:end), the end function
returns the index value corresponding to the last element in that dimension.

Classes can overload the end function to implement specialized behavior. If your class
defines an end method, MATLAB calls that method to determine how to interpret the
expression.

The end method has the calling syntax:

ind = end(A,k,n)

The arguments are described as follows:

• A is the object
• k is the index in the expression using the end syntax
• n is the total number of indices in the expression
• ind is the index value to use in the expression

For example, consider the 3-by-5 array A. When MATLAB encounters the expression:

A(end-1,:)

MATLAB calls the end method defined for the object A using the arguments:

ind = end(A,1,2)

These arguments mean that the end statement occurs in the first index and there are two
indices. The end class method returns the index value for the last element of the first
dimension (from which 1 is subtracted in this case). The original expression is evaluated
as:

A(3-1,:)

 end as Object Index

18-35

If your class implements an end method, ensure that it returns a value appropriate for the
class.

The end Method
The end method for the MyDataClass example (see “Class with Modified Indexing” on
page 18-39) operates on the contents of the Data property. The objective of this method
is to return a value that can replace end in any indexing expression, such as:

obj(4:end)
obj.Data(2,3:end)

This end method determines a positive integer value for end. The method returns the
value so that MATLAB can use it in the indexing expression.

function ind = end(obj,k,n)
 szd = size(obj.Data);
 if k < n
 ind = szd(k);
 else
 ind = prod(szd(k:end));
 end
end

See Also

Related Examples
• “Class with Modified Indexing” on page 18-39
• “Objects in Index Expressions” on page 18-37

18 Specialize Object Behavior

18-36

Objects in Index Expressions
In this section...
“Objects Indexes” on page 18-37
“Ways to Implement Objects as Indices” on page 18-37
“subsindex Implementation” on page 18-37

Objects Indexes
MATLAB can use objects as indices in indexed expressions. The rules of array indexing
apply — indices must be positive integers. Therefore, MATLAB must be able to derive a
value from the object that is a positive integer for use in the indexed expression.

Indexed expressions like X(A), where A is an object, cause MATLAB to call the
subsindex function. However, if an indexing expression results in a call to an overloaded
subsref or subsasgn method defined by the class of X, then MATLAB does not call
subsindex.

Ways to Implement Objects as Indices
There are several ways to implement indexing of one object by another object, X(A):

• Define a subsindex method in the class of A that converts A to an integer. MATLAB
calls A's subsindex method to perform indexing operations when the class of X does
not overload subsref or subsasgn.

• If the class of X overloads subsref or subsasgn, these methods can call the
subsindex method of A explicitly. The class of A must implement a subsindex
method that returns an appropriate value.

• If the class of X overloads subsref or subsasgn, these methods can contain code
that determines an integer index value. In this case, the class of A does not implement
a subsindex method.

subsindex Implementation
subsindex must return the value of the object as a zero-based integer index value in the
range 0 to prod(size(X))-1.

 Objects in Index Expressions

18-37

Suppose that you want to use object A to index into object B. B can be a single object or
an array, depending on the class designs.

C = B(A);

Here are two examples of subsindex methods. The first assumes you can convert class A
to a uint8. The second assumes class A stores an index value in a property.

• The subsindex method implemented by class A can convert the object to numeric
format to be used as an index:

function ind = subsindex(obj)
 ind = uint8(obj);
end

The class of obj implements a uint8 method to provide the conversion from the
object to an integer value.

• Class A implements subsindex to return a numeric value that is stored in a property:

function ind = subsindex(obj)
 ind = obj.ElementIndex;
end

Note subsindex values are 0-based, not 1-based.

See Also
numArgumentsFromSubscript | subsasgn | subsref

Related Examples
• “end as Object Index” on page 18-35

More About
• “Modify nargout and nargin for Indexing Methods” on page 18-9

18 Specialize Object Behavior

18-38

Class with Modified Indexing
In this section...
“How to Modify Class Indexing” on page 18-39
“Class Description” on page 18-39
“Specialize Subscripted Reference — subsref” on page 18-40
“Specialize Subscripted Assignment — subsasgn” on page 18-42
“Implement Addition for Object Data — double and plus” on page 18-43
“MyDataClass.m” on page 18-44

How to Modify Class Indexing
This example defines a class that modifies the default indexing behavior by implementing
subsref and subsasgn methods. The class also implements type conversion and
addition by implementing a double converter method and a plus method.

The objective of the class design is to:

• Enable you to treat an object of the class as a numeric array
• Be able to contain nonnumeric and numeric data in an object of the class

Class Description
The class has three properties:

• Data — numeric test data
• Description — description of test data
• Date — date test was conducted

Assume that you have the following random data (randi):

d = randi(9,3,4)

d =

 8 9 3 9
 9 6 5 2
 2 1 9 9

 Class with Modified Indexing

18-39

Create an instance of the class:

obj = MyDataClass(d,'Test001')

obj =

 MyDataClass with properties:

 Data: [3x4 double]
 Description: 'Test001'
 Date: [2012 1 7 9 32 34.5190]

The constructor arguments pass the values for the Data and Description properties.
The clock function assigns the value to the Date property from within the constructor.
This approach captures the time and date information when each instance is created.

Here is the preliminary code listing without the subsref, subsasgn double, and plus
methods.

classdef MyDataClass
 properties
 Data
 Description
 end
 properties (SetAccess = private)
 Date
 end
 methods
 function obj = MyDataClass(data,desc)
 if nargin > 0
 obj.Data = data;
 end
 if nargin > 1
 obj.Description = desc;
 end
 obj.Date = clock;
 end
 end
end

Specialize Subscripted Reference — subsref
Implement a subsref method to support both the default and a specialized type of
indexing.

18 Specialize Object Behavior

18-40

• The default indexed reference behavior for scalar objects:

obj.Data(2,3)

ans =

 5

• And to add the functionality to index into the Data property with an expression like
this statement:

obj(2,3)

If you redefine '()' indexing to support access to the Data property, you cannot create
arrays of MyDataClass objects and use '()' indexing to access individual objects. You
can reference only scalar objects.

To achieve the design goals, the subsref method must handle all indexing types. The
subsref method:

• Calls the builtin subsref function for '.' indexing
• Returns an error for '{}' indexing
• Defines its own version of '()' indexing.

The result: obj(i) is equivalent to obj.Data(i).

function sref = subsref(obj,s)
 % obj(i) is equivalent to obj.Data(i)
 switch s(1).type
 case '.'
 sref = builtin('subsref',obj,s);
 case '()'
 if length(s) < 2
 sref = builtin('subsref',obj.Data,s);
 return
 else
 sref = builtin('subsref',obj,s);
 end
 case '{}'
 error('MYDataClass:subsref',...
 'Not a supported subscripted reference')
 end
end

 Class with Modified Indexing

18-41

Specialize Subscripted Assignment — subsasgn
To support the equivalent of the indexed reference behavior with indexed assignment,
implement a subsasgn method.

• Support the default indexed assignment:

obj.Data(2,3) = 9;
• Add the functionality to assign values to the Data property with an expression like this

statement:

obj(2,3) = 9;

Like the subsref method, the subsasgn method:

• Calls the builtin subsasgn function for '.' indexing
• Returns an error for '{}' indexing
• Defines its own version of '()' indexing.

The substruct function redefines the index type and index subscripts structure that
MATLAB passes to subsref and subsasgn.

function obj = subsasgn(obj,s,val)
 if isempty(s) && isa(val,'MyDataClass')
 obj = MyDataClass(val.Data,val.Description);
 end
 switch s(1).type
 case '.'
 obj = builtin('subsasgn',obj,s,val);
 case '()'
 if length(s)<2
 if isa(val,'MyDataClass')
 error('MyDataClass:subsasgn',...
 'Object must be scalar')
 elseif isa(val,'double')
 % Redefine the struct s to make the call: obj.Data(i)
 snew = substruct('.','Data','()',s(1).subs(:));
 obj = subsasgn(obj,snew,val);
 end
 end
 case '{}'
 error('MyDataClass:subsasgn',...
 'Not a supported subscripted assignment')

18 Specialize Object Behavior

18-42

 end
end

Implement Addition for Object Data — double and plus
First, implement a double method that converts an object to an array of doubles. By
implementing a double converter method, it is possible to add a MyDataClass object to
another class of object. However, the other class must implement a double method that
also returns an array of doubles. For more information on type conversion, see “Object
Converters” on page 18-12.

Allow direct addition of the Data property values by implementing a plus method.
Implementing a plus method enables the use of the + operator for addition of
MyDataClass objects.

Because the plus method implements addition by adding double arrays, MATLAB:

• Apply the rules of addition when adding MyDataClass objects
• Returns errors for any condition that can cause errors in default numeric addition. For

example, dimension mismatch.

The plus method uses the double method to convert the object to numeric values before
performing the addition:

function a = double(obj)
 a = obj.Data;
end

function c = plus(obj,b)
 c = double(obj) + double(b);
end

For example, the plus method enables you to add a scalar number to the object Data
array.

Here are the values of the Data, displayed using indexed reference:

obj(:,:)

ans =

 8 9 3 9

 Class with Modified Indexing

18-43

 9 6 9 2
 2 1 9 9

Add 7 to the array contained in the Data property:

obj + 7

ans =

 15 16 10 16
 16 13 16 9
 9 8 16 16

MyDataClass.m
This definition for MyDataClass includes the end indexing method discussed in “end as
Object Index” on page 18-35.

classdef MyDataClass
 % Example for "A Class with Modified Indexing"
 properties
 Data
 Description
 end
 properties (SetAccess = private)
 Date
 end
 methods
 function obj = MyDataClass(data,desc)
 % Support 0-2 args
 if nargin > 0
 obj.Data = data;
 end
 if nargin > 1
 obj.Description = desc;
 end
 obj.Date = clock;
 end

 function sref = subsref(obj,s)
 % obj(i) is equivalent to obj.Data(i)
 switch s(1).type
 case '.'
 sref = builtin('subsref',obj,s);

18 Specialize Object Behavior

18-44

 case '()'
 if length(s)<2
 sref = builtin('subsref',obj.Data,s);
 return
 else
 sref = builtin('subsref',obj,s);
 end
 case '{}'
 error('MyDataClass:subsref',...
 'Not a supported subscripted reference')
 end
 end

 function obj = subsasgn(obj,s,val)
 if isempty(s) && isa(val,'MyDataClass')
 obj = MyDataClass(val.Data,val.Description);
 end
 switch s(1).type
 case '.'
 obj = builtin('subsasgn',obj,s,val);
 case '()'
 %
 if length(s)<2
 if isa(val,'MyDataClass')
 error('MyDataClass:subsasgn',...
 'Object must be scalar')
 elseif isa(val,'double')
 snew = substruct('.','Data','()',s(1).subs(:));
 obj = subsasgn(obj,snew,val);
 end
 end
 case '{}'
 error('MyDataClass:subsasgn',...
 'Not a supported subscripted assignment')
 end
 end

 function a = double(obj)
 a = obj.Data;
 end

 function c = plus(obj,b)
 c = double(obj) + double(b);
 end

 Class with Modified Indexing

18-45

 function ind = end(obj,k,n)
 szd = size(obj.Data);
 if k < n
 ind = szd(k);
 else
 ind = prod(szd(k:end));
 end
 end
 end
end

See Also

Related Examples
• “end as Object Index” on page 18-35
• “Number of Arguments for subsref and subsasgn” on page 18-6

18 Specialize Object Behavior

18-46

Operator Overloading
In this section...
“Why Overload Operators” on page 18-47
“How to Define Operators” on page 18-47
“Sample Implementation — Addable Objects” on page 18-48
“MATLAB Operators and Associated Functions” on page 18-50

Why Overload Operators
By implementing operators that are appropriate for your class, you can integrate objects
of your class into the MATLAB language. For example, objects that contain numeric data
can define arithmetic operations like +, *, - so that you can use these objects in
arithmetic expressions. By implementing relational operators, you can use objects in
conditional statements, like switch and if statements.

How to Define Operators
You can implement MATLAB operators to work with objects of your class. To implement
operators, define the associated class methods.

Each operator has an associated function (e.g., the + operator has an associated plus.m
function). You can implement any operator by creating a class method with the
appropriate name. This method can perform whatever steps are appropriate for the
operation being implemented.

For a list of operators and associated function names, see “MATLAB Operators and
Associated Functions” on page 18-50.

Object Precedence in Operations

User-defined classes have a higher precedence than built-in classes. For example,
suppose q is an object of class double and p is a user-defined class. Both of these
expressions generate a call to the plus method in the user-define class, if it exists:

q + p
p + q

 Operator Overloading

18-47

Whether this method can add objects of class double and the user-defined class depends
on how you implement the method.

When p and q are objects of different classes, MATLAB applies the rules of precedence to
determine which method to use.

“Object Precedence in Method Invocation” on page 9-48 provides information on how
MATLAB determines which method to call.

Operator Precedence

Overloaded operators retain the original MATLAB precedence for the operator. For
information on operator precedence, see “Operator Precedence”.

Sample Implementation — Addable Objects
The Adder class implements addition for objects of this class by defining a plus method.
Adder defines addition of objects as the addition of the NumericData property values.
The plus method constructs and returns an Adder object whose NumericData property
value is the result of the addition.

The Adder class also implements the less than operator (<) by defining a lt method. The
lt method returns a logical value after comparing the values in each object
NumericData property.

classdef Adder
 properties
 NumericData
 end
 methods
 function obj = Adder(val)
 obj.NumericData = val;
 end
 function r = plus(obj1,obj2)
 a = double(obj1);
 b = double(obj2);
 r = Adder(a + b);
 end
 function d = double(obj)
 d = obj.NumericData;
 end
 function tf = lt(obj1,obj2)
 if obj1.NumericData < obj2.NumericData

18 Specialize Object Behavior

18-48

 tf = true;
 else
 tf = false;
 end
 end
 end
end

Using a double converter enables you to add numeric values to Adder objects and to
perform addition on objects of the class.

a = Adder(1:10)

a =

 Adder with properties:

 NumericData: [1 2 3 4 5 6 7 8 9 10]

Add two objects:

a + a

ans =

 Adder with properties:

 NumericData: [2 4 6 8 10 12 14 16 18 20]

Add an object with any value that can be cast to double:

b = uint8(255) + a

b =

 Adder with properties:

 NumericData: [256 257 258 259 260 261 262 263 264 265]

Compare objects a and b using the < operator:

a < b

ans =

 1

 Operator Overloading

18-49

Ensure that your class provides any error checking required to implement your class
design.

MATLAB Operators and Associated Functions
The following table lists the function names for MATLAB operators. Implementing
operators to work with arrays (scalar expansion, vectorized arithmetic operations, and so
on), can also require modifying indexing and concatenation. Use the links in this table to
find specific information on each function.

Operation Method to Define Description
a + b plus(a,b) Binary addition
a - b minus(a,b) Binary subtraction
-a uminus(a) Unary minus
+a uplus(a) Unary plus
a.*b times(a,b) Element-wise multiplication
a*b mtimes(a,b) Matrix multiplication
a./b rdivide(a,b) Right element-wise division
a.\b ldivide(a,b) Left element-wise division
a/b mrdivide(a,b) Matrix right division
a\b mldivide(a,b) Matrix left division
a.^b power(a,b) Element-wise power
a^b mpower(a,b) Matrix power
a < b lt(a,b) Less than
a > b gt(a,b) Greater than
a <= b le(a,b) Less than or equal to
a >= b ge(a,b) Greater than or equal to
a ~= b ne(a,b) Not equal to
a == b eq(a,b) Equality
a & b and(a,b) Logical AND
a | b or(a,b) Logical OR
~a not(a) Logical NOT

18 Specialize Object Behavior

18-50

Operation Method to Define Description
a:d:b

a:b

colon(a,d,b)

colon(a,b)

Colon operator

a' ctranspose(a) Complex conjugate
transpose

a.' transpose(a) Matrix transpose
[a b] horzcat(a,b,...) Horizontal concatenation
[a; b] vertcat(a,b,...) Vertical concatenation
a(s1,s2,...sn) subsref(a,s) Subscripted reference
a(s1,...,sn) = b subsasgn(a,s,b) Subscripted assignment
b(a) subsindex(a) Subscript index

See Also

Related Examples
• “Define Arithmetic Operators” on page 20-21
• “Methods That Modify Default Behavior” on page 18-2

 See Also

18-51

Customizing Object Display

• “Custom Display Interface” on page 19-2
• “How CustomDisplay Works” on page 19-8
• “Role of size Function in Custom Displays” on page 19-11
• “Customize Display for Heterogeneous Arrays” on page 19-13
• “Class with Default Object Display” on page 19-15
• “Choose a Technique for Display Customization” on page 19-20
• “Customize Property Display” on page 19-24
• “Customize Header, Property List, and Footer” on page 19-27
• “Customize Display of Scalar Objects” on page 19-33
• “Customize Display of Object Arrays” on page 19-38
• “Overloading the disp Function” on page 19-43

19

Custom Display Interface
In this section...
“Command Window Display” on page 19-2
“Default Object Display” on page 19-2
“CustomDisplay Class” on page 19-3
“Methods for Customizing Object Display” on page 19-4

Command Window Display
MATLAB displays information in the command window when a statements that is not
terminated with a semicolon returns a variable. For example, this statement creates a
structure with a field that contains the number 7.

a.field1 = 7

MATLAB displays the variable name, class, and the value.

a =

 struct with fields:

 field1: 7

MATLAB provides user-defined classes with similar display functionality. User-defined
classes can customize how MATLAB displays objects of the class using the API provided
by the matlab.mixin.CustomDisplay class. To use this API, derive your class from
matlab.mixin.CustomDisplay.

Default Object Display
MATLAB adds default methods named disp and display to all MATLAB classes that do
not implement their own methods with those names. These methods are not visible, but
create the default simple display.

The default simple display consists of the following parts:

• A header showing the class name, and the dimensions for nonscalar arrays.

19 Customizing Object Display

19-2

• A list of all nonhidden public properties, shown in the order of definition in the class.

The actual display depends on whether the object is scalar or nonscalar. Also, there are
special displays for a scalar handle to a deleted object and empty object arrays. Objects in
all of these states are displayed differently if the objects have no properties.

The details function creates the default detailed display. The detailed display adds
these items to the simple display:

• Use of fully qualified class names
• Link to handle class, if the object is a handle
• Links to methods, events, and superclasses functions executed on the object.

See “Class with Default Object Display” on page 19-15 for an example of how MATLAB
displays objects.

Properties Displayed by Default

MATLAB displays object properties that have public get access and are not hidden (see
“Property Attributes” on page 8-9). Inherited abstract properties are excluded from
display. When the object being displayed is scalar, any dynamic properties attached to the
object are also included.

CustomDisplay Class
The matlab.mixin.CustomDisplay class provides an interface that you can use to
customize object display for your class. To use this interface, derive your class from
CustomDisplay:

classdef MyClass < matlab.mixin.CustomDisplay

The CustomDisplay class is HandleCompatible, so you can use it in combination with
both value and handle superclasses.

Note You cannot use matlab.mixin.CustomDisplay to derive a custom display for
enumeration classes.

 Custom Display Interface

19-3

disp, display, and details

The CustomDisplay interface does not allow you to override disp, display, and
details. Instead, override any combination of the customization methods defined for
this purpose.

Methods for Customizing Object Display
There are two groups of methods that you use to customize object display for your class:

• Part builder methods build the strings used for the standard display. Override any of
these methods to change the respective parts of the display.

• State handler methods are called for objects in specific states, like scalar, nonscalar,
and so on. Override any of these methods to handle objects in a specific state.

All of these methods have protected access and must be defined as protected in your
subclass of CustomDisplay (that is, Access = protected).

Parts of an Object Display

There are three parts that makeup the standard object display — header, property list,
and footer

For example, here is the standard object display for a containers.Map object:

The default object display does not include a footer. The detailed display provides more
information:

19 Customizing Object Display

19-4

You can customize how MATLAB displays objects as a result of expressions that display
objects in the command window such as unterminated statements that return objects or
calls to disp and display. The results displayed when calling details on an object or
object array are not changed by the CustomDisplay API.

Part Builder Methods

Each part of the object display has an associated method that assembles the respective
part of the display.

Method Purpose Default
getHeader Create the text used for the header. Returns the char vectors,

[class(obj), ' with
properties:'] linking the class
name to a help popup

getPropertyGroup
s

Define how and what properties
display, including order, values, and
grouping.

Returns an array of PropertyGroup
objects, which determines how to
display the properties

getFooter Create the text used for the footer. There are two footers:

• Simple display — Returns an
empty char vector

• Detailed display — Returns linked
calls to methods, events, and
superclasses for this class

 Custom Display Interface

19-5

Object States That Affect Display

There are four object states that affect how MATLAB displays objects:

• Valid scalar object
• Nonscalar object array
• Empty object array
• Scalar handle to a deleted object

State Handler Methods

Each object state has an associated method that MATLAB calls whenever displaying
objects that are in that particular state.

State Handler Method Called for Object in This State
displayScalarObject (isa(obj,'handle') && isvalid(obj))

&& prod(size(obj)) == 1
displayNonScalarObject prod(size(obj)) > 1
displayEmptyObject prod(size(obj)) == 0
displayScalarHandleToDeletedObject isa(obj,'handle') && isscalar(obj) &&

~isvalid(obj)

Utility Methods

The CustomDisplay class provides utility methods that return strings that are used in
various parts of the different display options. These static methods return text that
simplifies the creation of customized object displays.

If the computer display does not support hypertext linking, the strings are returned
without the links.

Method Inputs Outputs
convertDimensionsToStrin
g

Valid object array Object dimensions converted to
a char vector; determined by
calling size(obj)

displayPropertyGroups PropertyGroup array Displays the titles and property
groups defined

19 Customizing Object Display

19-6

Method Inputs Outputs
getClassNameForHeader Object Simple class name linked to the

object’s documentation
getDeletedHandleText None Text 'handle to deleted'

linked to the documentation on
deleted handles

getDetailedFooter Object Text containing phrase
'Methods, Events,
Superclasses', with each link
executing the respective
command on the input object

getDetailedHeader Object Text containing linked class
name, link to handle page (if
handle class) and 'with
properties:'

getHandleText None Text 'handle' linked to a
section of the documentation
that describes handle objects

getSimpleHeader Object Text containing linked class
name and the phrase 'with
properties:'

See Also

Related Examples
• “How CustomDisplay Works” on page 19-8

 See Also

19-7

How CustomDisplay Works
In this section...
“Steps to Display an Object” on page 19-8
“Methods Called for a Given Object State” on page 19-9

Steps to Display an Object
When displaying an object, MATLAB determines the state of the object and calls the
appropriate method for that state (see “Object States That Affect Display” on page 19-6).

For example, suppose obj is a valid scalar object of a class derived from
CustomDisplay. If you type obj at the command line without terminating the statement
with a semicolon:

>> obj

The following sequence results in the display of obj:

1 MATLAB determines the class of obj and calls the disp method to display the object.
2 disp calls size to determine if obj is scalar or nonscalar
3 When obj is a scalar handle object, disp calls isvalid to determine if obj is the

handle of a deleted object. Deleted handles in nonscalar arrays do not affect the
display.

4 disp calls the state handler method for an object of the state of obj. In this case,
obj is a valid scalar that results in a call to:

displayScalarObject(obj)
5 displayScalarObject calls the display part-builder methods to provide the

respective header, property list, and footer.

...
header = getHeader(obj);
disp(header)
...
groups = getPropertyGroups(obj)
displayPropertyGroups(obj,groups)
...
footer = getFooter
disp(footer)

19 Customizing Object Display

19-8

MATLAB follows a similar sequence for nonscalar object arrays and empty object arrays.

In the case of scalar handles to deleted objects, disp calls the
displayScalarHandleToDeletedObject method, which displays the default text for
handles to deleted objects without calling any part-builder methods.

Methods Called for a Given Object State
The following diagram illustrates the methods called to display an object that derives
from CustomDisplay. The disp method calls the state handler method that is
appropriate for the state of the object or object array being displayed.

Only an instance of a handle class can be in a state of scalar handle to a deleted object.

 How CustomDisplay Works

19-9

See Also

Related Examples
• “Class with Default Object Display” on page 19-15

19 Customizing Object Display

19-10

Role of size Function in Custom Displays
In this section...
“How size Is Used” on page 19-11
“Precautions When Overloading size” on page 19-11

How size Is Used
In the process of building the custom display, CustomDisplay methods call the size
function at several points:

• disp calls size to determine which state handler method to invoke.
• The default getHeader method calls size to determine whether to display a scalar or

nonscalar header.
• The default displayPropertyGroups method calls size to determine if it should

look up property values when the property group is a cell array of property names. By
default, only scalar objects display the values of properties.

Precautions When Overloading size
If your class overloads the size function, then MATLAB calls the overloading version. You
must ensure that the implementation of size is consistent with the way you want to
display objects of the class.

An unusual or improper implementation of size can result in undesirable display
behavior. For example, suppose a class overloads size reports an object as scalar when it
is not. In this class, a property list consisting of a cell array of strings results in the
property values of the first object of the array being displayed. This behavior can give the
impression that all objects in the array have the same property values.

However, reporting an object as scalar when in fact the object is empty results in the
object displaying as an empty object array. The default methods of the CustomDisplay
interface always determine if the input is an empty array before attempting to access
property values.

As you override CustomDisplay methods to implement your custom object display,
consider how an overloading size method can affect the result.

 Role of size Function in Custom Displays

19-11

See Also

Related Examples
• “Methods That Modify Default Behavior” on page 18-2

19 Customizing Object Display

19-12

Customize Display for Heterogeneous Arrays
You can call only sealed methods on nonscalar heterogeneous arrays. If you want to
customize classes that are part of a heterogeneous hierarchy, you must override and
declare as Sealed all the methods that are part of the CustomDisplay interface.

The versions of disp and display that are inherited from
matlab.mixin.CustomDisplay are sealed. However, these methods call all of the part
builder (“Part Builder Methods” on page 19-5) and state handler methods (“State Handler
Methods” on page 19-6).

To use the CustomDisplay interface, the root class of the heterogeneous hierarchy can
declare these methods as Sealed and Access = protected.

If you do not need to override a particular method, then call the superclass method, as
shown in the following code.

For example, the following code shows modifications to the getPropertyGroups and
displayScalarObject methods, while using the superclass implementation of all
others.
classdef RootClass < matlab.mixin.CustomDisplay & matlab.mixin.Heterogeneous
 %...
 methods (Sealed, Access = protected)
 function header = getHeader(obj)
 header = getHeader@matlab.mixin.CustomDisplay(obj);
 end

 function groups = getPropertyGroups(obj)
 % Override of this method
 % ...
 end

 function footer = getFooter(obj)
 footer = getFooter@matlab.mixin.CustomDisplay(obj);
 end

 function displayNonScalarObject(obj)
 displayNonScalarObject@matlab.mixin.CustomDisplay(obj);
 end

 function displayScalarObject(obj)
 % Override of this method
 % ...
 end

 function displayEmptyObject(obj)
 displayEmptyObject@matlab.mixin.CustomDisplay(obj);
 end

 Customize Display for Heterogeneous Arrays

19-13

 function displayScalarHandleToDeletedObject(obj)
 displayScalarHandleToDeletedObject@matlab.mixin.CustomDisplay(obj);
 end
 end
end

You do not need to declare the inherited static methods as Sealed.

See Also

Related Examples
• “Designing Heterogeneous Class Hierarchies” on page 10-24

19 Customizing Object Display

19-14

Class with Default Object Display
In this section...
“The EmployeeInfo Class” on page 19-15
“Default Display — Scalar” on page 19-16
“Default Display — Nonscalar” on page 19-16
“Default Display — Empty Object Array” on page 19-17
“Default Display — Handle to Deleted Object” on page 19-18
“Default Display — Detailed Display” on page 19-18

The EmployeeInfo Class
The EmployeeInfo class defines a number of properties to store information about
company employees. This simple class serves as the example class used in display
customization sample classes.

EmployeeInfo derives from the matlab.mixin.CustomDisplay class to enable
customization of the object display.

EmployeeInfo is also a handle class. Therefore instances of this class can be in the state
referred to as a handle to a deleted object. This state does not occur with value classes
(classes not derived from handle).

classdef EmployeeInfo < handle & matlab.mixin.CustomDisplay
 properties
 Name
 JobTitle
 Department
 Salary
 Password
 end
 methods
 function obj = EmployeeInfo
 obj.Name = input('Name: ');
 obj.JobTitle = input('Job Title: ');
 obj.Department = input('Department: ');
 obj.Salary = input('Salary: ');
 obj.Password = input('Password: ');
 end

 Class with Default Object Display

19-15

 end
end

The matlab.mixin.CustomDisplay is handle compatible. Therefore, superclasses can
be either handle or value classes.

Default Display — Scalar
Here is the creation and display of a scalar EmployeeInfo object. By default, MATLAB
displays properties and their values for scalar objects.

Provide inputs for the constructor:

>>Emp123 = EmployeeInfo;
Name: 'Bill Tork'
Job Title: 'Software Engineer'
Department: 'Product Development'
Salary: 1000
Password: 'bill123'

Display the object:

>>Emp123

Emp123 =

 EmployeeInfo with properties:

 Name: 'Bill Tork'
 JobTitle: 'Software Engineer'
 Department: 'Product Development'
 Salary: 1000
 Password: 'bill123'

Testing for Scalar Objects

To test for scalar objects, use isscalar.

Default Display — Nonscalar
The default display for an array of objects does not show property values. For example,
concatenating two EmployeeInfo objects generates this display:

19 Customizing Object Display

19-16

>>[Emp123,Emp124]
ans

 1x2 EmployeeInfo array with properties:

 Name
 JobTitle
 Department
 Salary
 Password

Testing for Nonscalar Objects

To test for nonscalar objects, use a negated call to isscalar .

Default Display — Empty Object Array
An empty object array has at least one dimension equal to zero.

>> Empt = EmployeeInfo.empty(0,5)

Empt =

 0x5 EmployeeInfo array with properties:

 Name
 JobTitle
 Department
 Salary
 Password

Testing for Empty Object Arrays

Use isempty to test for empty object arrays. An empty object array is not scalar because
its dimensions can never be 1–by-1.

>> emt = EmployeeInfo.empty

emt =

 0x0 EmployeeInfo array with properties:

 Name
 JobTitle

 Class with Default Object Display

19-17

 Department
 Salary
 Password

>> isscalar(emt)

ans =

 0

Default Display — Handle to Deleted Object
When a handle object is deleted, the handle variable can remain in the workspace.

>> delete(Emp123)
>> Emp123
Emp123 =
 handle to deleted EmployeeInfo

Testing for Handles to Deleted Objects

To test for a handle to a deleted object, use isvalid.

Note isvalid is a handle class method. Calling isvalid on a value class object causes
an error.

Default Display — Detailed Display
The details method does not support customization and always returns the standard
detailed display:

details(Emp123)
 EmployeeInfo handle with properties:

 Name: 'Bill Tork'
 JobTitle: 'Software Engineer'
 Department: 'Product Development'
 Salary: 1000
 Password: 'bill123'

 Methods, Events, Superclasses

19 Customizing Object Display

19-18

See Also

Related Examples
• “Custom Display Interface” on page 19-2

 See Also

19-19

Choose a Technique for Display Customization
In this section...
“Ways to Implement a Custom Display” on page 19-20
“Sample Approaches Using the Interface” on page 19-21

Ways to Implement a Custom Display
The way you customize object display using the matlab.mixin.CustomDisplay class
depends on:

• What parts of the display you want to customize
• What object states you want to use the custom display

If you are making small changes to the default layout, then override the relevant part
builder methods (“Part Builder Methods” on page 19-5). For example, suppose you want
to:

• Change the order or value of properties, display a subset of properties, or create
property groups

• Modify the header text
• Add a footer

If you are defining a nonstandard display for a particular object state (scalar, for
example), then the best approach is to override the appropriate state handler method
(“State Handler Methods” on page 19-6).

In some cases, a combination of method overrides might be the best approach. For
example, your implementation of displayScalarObject might

• Use some of the utility methods (“Utility Methods” on page 19-6) to build your own
display strings using parts from the default display

• Call a part builder method to get the default text for that particular part of the display
• Implement a completely different display for scalar objects.

Once you override any CustomDisplay method, MATLAB calls your override in all cases
where the superclass method would have been called. For example, if you override the

19 Customizing Object Display

19-20

getHeader method, your override must handle all cases where a state handler method
calls getHeader. (See “Methods Called for a Given Object State” on page 19-9)

Sample Approaches Using the Interface
Here are some simple cases that show what methods to use for the particular customized
display.

Change the Display of Scalar Objects

Use a nonstandard layout for scalar object display that is fully defined in the
displayScalarObject method:

classdef MyClass < matlab.mixin.CustomDisplay
 ...
 methods (Access = protected)
 function displayScalarObject(obj)
 % Implement the custom display for scalar obj
 end
 end
end

Custom Property List with Standard Layout

Use standard display layout, but create a custom property list for scalar and nonscalar
display:

classdef MyClass < matlab.mixin.CustomDisplay
 ...
 methods(Access = protected)
 function groups = getPropertyGroups(obj)
 % Return PropertyGroup instances
 end
 end
end

Custom Property List for Scalar Only

Use standard display layout, but create a custom property list for scalar only. Call the
superclass getPropertyGroups for the nonscalar case.
classdef MyClass < matlab.mixin.CustomDisplay
 properties
 Prop1

 Choose a Technique for Display Customization

19-21

 Prop2
 Prop3
 end
 methods(Access = protected)
 function groups = getPropertyGroups(obj)
 if isscalar(obj)
 % Scalar case: change order
 propList = {'Prop2','Prop1','Prop3'};
 groups = matlab.mixin.util.PropertyGroup(propList)
 else
 % Nonscalar case: call superclass method
 groups = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 end
 end
 end
end

Custom Property List with Modified Values

Change the values displayed for some properties in the scalar case by creating property/
value pairs in a struct. This getPropertyGroups method displays only Prop1 and
Prop2, and displays the value of Prop2 as Prop1 divided by Prop3.
classdef MyClass < matlab.mixin.CustomDisplay
 properties
 Prop1
 Prop2
 Prop3
 end
 methods(Access = protected)
 function groups = getPropertyGroups(obj)
 if isscalar(obj)
 % Specify the values to be displayed for properties
 propList = struct('Prop1',obj.Prop1,...
 'Prop2',obj.Prop1/obj.Prop3);
 groups = matlab.mixin.util.PropertyGroup(propList)
 else
 % Nonscalar case: call superclass method
 groups = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 end
 end
 end
end

Complete Class Definitions

For complete class implementations, see these sections:

• “Customize Property Display” on page 19-24

“Customize Header, Property List, and Footer” on page 19-27

19 Customizing Object Display

19-22

“Customize Display of Scalar Objects” on page 19-33

“Customize Display of Object Arrays” on page 19-38

 Choose a Technique for Display Customization

19-23

Customize Property Display
In this section...
“Objective” on page 19-24
“Change the Property Order” on page 19-24
“Change the Values Displayed for Properties” on page 19-25

Objective
Change the order and number of properties displayed for an object of your class.

Change the Property Order
Suppose your class definition contains the following property definition:

properties
 Name
 JobTitle
 Department
 Salary
 Password
end

In the default scalar object display, MATLAB displays all the public properties along with
their values. However, you want to display only Department, JobTitle, and Name, in
that order. You can do this by deriving from CustomDisplay and overriding the
getPropertyGroups method.

Your override

• Defines method Access as protected to match the definition in the CustomDisplay
superclass

• Creates a cell array of property names in the desired order
• Returns a PropertyGroup object constructed from the property list cell array

methods (Access = protected)
 function propgrp = getPropertyGroups(~)
 proplist = {'Department','JobTitle','Name'};
 propgrp = matlab.mixin.util.PropertyGroup(proplist);

19 Customizing Object Display

19-24

 end
end

When you create a PropertyGroup object using a cell array of property names, MATLAB
automatically

• Adds the property values for a scalar object display
• Uses the property names without values for a nonscalar object display (including

empty object arrays)

The getPropertyGroups method is not called to create the display for a scalar handle
to a deleted object.

Change the Values Displayed for Properties
Given the same class properties used in the previous section, you can change the value
displayed for properties by building the property list as a struct and specifying values
for property names. This override of the getPropertyGroups method uses the default
property display for nonscalar objects by calling the superclass getPropertyGroups
method. For scalar objects, the override:

• Changes the value displayed for the Password property to a '*' character for each
character in the password.

• Displays the text 'Not Available' for the Salary property.

methods (Access = protected)
 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 else
 pd(1:length(obj.Password)) = '*';
 propList = struct('Department',obj.Department,...
 'JobTitle',obj.JobTitle,...
 'Name',obj.Name,...
 'Salary','Not available',...
 'Password',pd);
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 end
 end
end

The object display looks like this:

 EmployeeInfo with properties:

 Department: 'Product Development'

 Customize Property Display

19-25

 JobTitle: 'Software Engineer'
 Name: 'Bill Tork'
 Salary: 'Not available'
 Password: '*******'

Full Class Listing
classdef EmployeeInfo < handle & matlab.mixin.CustomDisplay
 properties
 Name
 JobTitle
 Department
 Salary
 Password
 end
 methods
 function obj = EmployeeInfo
 obj.Name = input('Name: ');
 obj.JobTitle = input('Job Title: ');
 obj.Department = input('Department: ');
 obj.Salary = input('Salary: ');
 obj.Password = input('Password: ');
 end
 end
 methods (Access = protected)
 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 else
 pd(1:length(obj.Password)) = '*';
 propList = struct('Department',obj.Department,...
 'JobTitle',obj.JobTitle,...
 'Name',obj.Name,...
 'Salary','Not available',...
 'Password',pd);
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 end
 end
 end
end

See Also

Related Examples
• “Choose a Technique for Display Customization” on page 19-20

19 Customizing Object Display

19-26

Customize Header, Property List, and Footer
In this section...
“Objective” on page 19-27
“Design of Custom Display” on page 19-27
“getHeader Method Override” on page 19-29
“getPropertyGroups Override” on page 19-30
“getFooter Override” on page 19-30

Objective
Customize each of the three parts of the display — header, property groups, and footer.

Design of Custom Display

Note This example uses the EmployeeInfo class described in the “Class with Default
Object Display” on page 19-15 section.

For the header:

• Use default header for nonscalar object arrays.
• Build header text with linked class name and department name (from Department

property)

For properties:

• Nonscalar object arrays display a subset of property names in a different order than
the default.

• Scalar objects create two property groups that have titles (Public Info and
Personal Info).

For the footer:

• Add a footer to the display, only when the object is a valid scalar that displays property
values.

 Customize Header, Property List, and Footer

19-27

Here is the customized display of an object of the EmployeeInfo class.

Emp123 =

EmployeeInfo Dept: Product Development

 Public Info
 Name: 'Bill Tork'
 JobTitle: 'Software Engineer'

 Personal Info
 Salary: 1000
 Password: 'bill123'

Company Private

Here is the custom display of an array of EmployeeInfo objects:

[Emp123,Emp124]

ans =

 1x2 EmployeeInfo array with properties:

 Department
 Name
 JobTitle

Here is the display of an empty object array:

>> EmployeeInfo.empty(0,5)

ans =

 0x5 EmployeeInfo array with properties:

 Department
 Name
 JobTitle

Here is the display of a handle to a delete object (EmployeeInfo is a handle class):

>> delete(Emp123)
>> Emp123

19 Customizing Object Display

19-28

Emp123 =

 handle to deleted EmployeeInfo

Implementation

The EmployeeInfo class overrides three matlab.mixin.CustomDisplay methods to
implement the display shown:

• getHeader
• getPropertyGroups
• getFooter

Each method must produce the desired results with each of the following inputs:

• Scalar object
• Nonscalar object array
• Empty object array

getHeader Method Override
MATLAB calls getHeader to get the header text. The EmployeeInfo class overrides this
method to implement the custom header for scalar display. Here is how it works:

• Nonscalar (including empty object) arrays call the superclass getHeader, which
returns the default header.

• Scalar handles to deleted objects do not result in a call to getHeader.
• Scalar inputs build a custom header using the getClassNameForHeader static

method to return linked class name text, and the value of the Department property.

Here is the EmployeeInfo override of the getHeader method. The required protected
access is inherited from the superclass.
methods (Access = protected)
 function header = getHeader(obj)
 if ~isscalar(obj)
 header = getHeader@matlab.mixin.CustomDisplay(obj);
 else
 className = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);
 newHeader = [className,' Dept: ',obj.Department];
 header = sprintf('%s\n',newHeader);
 end

 Customize Header, Property List, and Footer

19-29

 end
end

getPropertyGroups Override
MATLAB calls getPropertyGroups to get the PropertyGroup objects, which control
how properties are displayed. This method override defines two different property lists
depending on the object’s state:

• For nonscalar inputs, including empty arrays and arrays containing handles to deleted
objects, create a property list as a cell array to reorder properties.

By default, MATLAB does not display property values for nonscalar inputs.
• For scalar inputs, create two property groups with titles. The scalar code branch lists

properties in a different order than the nonscalar case and includes Salary and
Password properties. MATLAB automatically assigns property values.

• Scalar handles to deleted objects do not result in a call to getPropertyGroups.

Both branches return a matlab.mixin.util.PropertyGroup object, which determines
how to displays the object properties.

Here is the EmployeeInfo override of the getPropertyGroups method. The protected
access is inherited from the superclass.
methods (Access = protected)
 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 propList = {'Department','Name','JobTitle'};
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 else
 gTitle1 = 'Public Info';
 gTitle2 = 'Personal Info';
 propList1 = {'Name','JobTitle'};
 propList2 = {'Salary','Password'};
 propgrp(1) = matlab.mixin.util.PropertyGroup(propList1,gTitle1);
 propgrp(2) = matlab.mixin.util.PropertyGroup(propList2,gTitle2);
 end
 end
end

getFooter Override
MATLAB calls getFooter to get the footer text. The EmployeeInfo getFooter method
defines a footer for the display, which is included only when the input is a valid scalar
object. In all other cases, getFooter returns an empty char vector.

19 Customizing Object Display

19-30

Scalar handles to deleted objects do not result in a call to getFooter.

methods (Access = protected)
 function footer = getFooter(obj)
 if isscalar(obj)
 footer = sprintf('%s\n','Company Private');
 else
 footer = '';
 end
 end
end

Complete Class Listing
classdef EmployeeInfo < handle & matlab.mixin.CustomDisplay
 properties
 Name
 JobTitle
 Department
 Salary
 Password
 end
 methods
 function obj = EmployeeInfo
 obj.Name = input('Name: ');
 obj.JobTitle = input('Job Title: ');
 obj.Department = input('Department: ');
 obj.Salary = input('Salary: ');
 obj.Password = input('Password: ');
 end
 end

 methods (Access = protected)
 function header = getHeader(obj)
 if ~isscalar(obj)
 header = getHeader@matlab.mixin.CustomDisplay(obj);
 else
 className = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);
 newHeader = [className,' Dept: ',obj.Department];
 header = sprintf('%s\n',newHeader);
 end
 end

 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 propList = {'Department','Name','JobTitle'};
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 else
 gTitle1 = 'Public Info';
 gTitle2 = 'Personal Info';
 propList1 = {'Name','JobTitle'};
 propList2 = {'Salary','Password'};
 propgrp(1) = matlab.mixin.util.PropertyGroup(propList1,gTitle1);

 Customize Header, Property List, and Footer

19-31

 propgrp(2) = matlab.mixin.util.PropertyGroup(propList2,gTitle2);
 end
 end

 function footer = getFooter(obj)
 if isscalar(obj)
 footer = sprintf('%s\n','Company Private');
 else
 footer = '';
 end
 end
 end
end

See Also

Related Examples
• “Choose a Technique for Display Customization” on page 19-20

19 Customizing Object Display

19-32

Customize Display of Scalar Objects
In this section...
“Objective” on page 19-33
“Design Of Custom Display” on page 19-33
“displayScalarObject Method Override” on page 19-34
“getPropertyGroups Override” on page 19-35

Objective
Customize the display of scalar objects.

Design Of Custom Display

Note This example uses the EmployeeInfo class described in the “Class with Default
Object Display” on page 19-15 section.

The objective of this customized display is to:

• Modify the header to include the department name obtained from the Department
property

• Group properties into two categories titled Public Info and Personal Info.
• Modify which properties are displayed
• Modify the values displayed for Personal Info category
• Use the default displayed for nonscalar objects, including empty arrays, and scalar

deleted handles

For example, here is the customized display of an object of the EmployeeInfo class.

Emp123 =

EmployeeInfo Dept: Product Development

 Public Info
 Name: 'Bill Tork'
 JobTitle: 'Software Engineer'

 Customize Display of Scalar Objects

19-33

 Personal Info
 Salary: 'Level: 10'
 Password: '*******'

Implementation

The EmployeeInfo class overrides two matlab.mixin.CustomDisplay methods to
implement the display shown:

• displayScalarObject — Called to display valid scalar objects
• getPropertyGroups — Builds the property groups for display

displayScalarObject Method Override
MATLAB calls displayScalarObject to display scalar objects. The EmployeeInfo
class overrides this method to implement the scalar display. Once overridden, this method
must control all aspects of scalar object display, including creating the header, property
groups, and footer, if used.

This implementation:

• Builds a custom header using the getClassNameForHeader static method to return
linked class name text and the value of the Department property to get the
department name.

• Uses sprintf to add a new line to the header text
• Displays the header with the built-in disp function.
• Calls the getPropertyGroups override to define the property groups (see following

section).
• Displays the property groups using the displayPropertyGroups static method.

Here is the EmployeeInfo override of the displayScalarObject method. The
required protected access is inherited from the superclass.
methods (Access = protected)
 function displayScalarObject(obj)
 className = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);
 scalarHeader = [className,' Dept: ',obj.Department];
 header = sprintf('%s\n',scalarHeader);
 disp(header)
 propgroup = getPropertyGroups(obj);
 matlab.mixin.CustomDisplay.displayPropertyGroups(obj,propgroup)

19 Customizing Object Display

19-34

 end
end

getPropertyGroups Override
MATLAB calls getPropertyGroups when displaying scalar or nonscalar objects.
However, MATLAB does not call this method when displaying a scalar handle to a deleted
object.

The EmployeeInfo class overrides this method to implement the property groups for
scalar object display.

This implementation calls the superclass getPropertyGroups method if the input is not
scalar. If the input is scalar, this method:

• Defines two titles for the two groups
• Creates a cell array of property names that are included in the first group. MATLAB

adds the property values for the display
• Creates a struct array of property names with associated property values for the

second group. Using a struct instead of a cell array enables you to replace the values
that are displayed for the Salary and Password properties without changing the
personal information stored in the object properties.

• Constructs two matlab.mixin.util.PropertyGroup objects, which are used by
the displayScalarObject method.

Here is the EmployeeInfo override of the getPropertyGroups method. The required
protected access is inherited from the superclass.
methods (Access = protected)
 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 else
 gTitle1 = 'Public Info';
 gTitle2 = 'Personal Info';
 propList1 = {'Name','JobTitle'};
 pd(1:length(obj.Password)) = '*';
 level = round(obj.Salary/100);
 propList2 = struct('Salary',...
 ['Level: ',num2str(level)],...
 'Password',pd);
 propgrp(1) = matlab.mixin.util.PropertyGroup(propList1,gTitle1);
 propgrp(2) = matlab.mixin.util.PropertyGroup(propList2,gTitle2);
 end
 end
end

 Customize Display of Scalar Objects

19-35

Complete Class Listing
classdef EmployeeInfo4 < handle & matlab.mixin.CustomDisplay
 properties
 Name
 JobTitle
 Department
 Salary
 Password
 end
 methods
 function obj = EmployeeInfo4
 obj.Name = input('Name: ');
 obj.JobTitle = input('Job Title: ');
 obj.Department = input('Department: ');
 obj.Salary = input('Salary: ');
 obj.Password = input('Password: ');
 end
 end

 methods (Access = protected)
 function displayScalarObject(obj)
 className = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);
 scalarHeader = [className,' Dept: ',obj.Department];
 header = sprintf('%s\n',scalarHeader);
 disp(header)
 propgroup = getPropertyGroups(obj);
 matlab.mixin.CustomDisplay.displayPropertyGroups(obj,propgroup)
 end

 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 else
 % property groups for scalars
 gTitle1 = 'Public Info';
 gTitle2 = 'Personal Info';
 propList1 = {'Name','JobTitle'};
 pd(1:length(obj.Password)) = '*';
 level = round(obj.Salary/100);
 propList2 = struct('Salary',...
 ['Level: ',num2str(level)],...
 'Password',pd);
 propgrp(1) = matlab.mixin.util.PropertyGroup(propList1,gTitle1);
 propgrp(2) = matlab.mixin.util.PropertyGroup(propList2,gTitle2);
 end
 end
 end
end

19 Customizing Object Display

19-36

See Also

Related Examples
• “Choose a Technique for Display Customization” on page 19-20

 See Also

19-37

Customize Display of Object Arrays
In this section...
“Objective” on page 19-38
“Design of Custom Display” on page 19-38
“The displayNonScalarObject Override” on page 19-39
“The displayEmptyObject Override” on page 19-40

Objective
Customize the display of nonscalar objects, including empty object arrays.

Design of Custom Display

Note This example uses the EmployeeInfo class described in the “Class with Default
Object Display” on page 19-15 section.

The objective of this customized display is to:

• Construct a custom header using some elements of the default header
• Display a subset of property-specific information for each object in the array.
• List handles to deleted objects in the array using a char vector with links to

documentation for handle objects and the class.
• Display empty objects with a slight modification to the default header

Here is the customized display of an array of three EmployeeInfo objects

1x3 EmployeeInfo array with members:
1. Employee:
 Name: 'Bill Tork'
 Department: 'Product Development'

2. Employee:
 Name: 'Alice Blackwell'
 Department: 'QE'

19 Customizing Object Display

19-38

3. Employee:
 Name: 'Nancy Green'
 Department: 'Documentation'

Deleted object handles in the array indicate their state:

1x3 EmployeeInfo members:

1. Employee:
 Name: 'Bill Tork'
 Department: 'Product Development'

2. handle to deleted EmployeeInfo

3. Employee:
 Name: 'Nancy Green'
 Department: 'Documentation'

To achieve the desired result, the EmployeeInfo class overrides the following methods
of the matlab.mixin.CustomDisplay class:

• displayNonScalarObject — Called to display nonempty object arrays
• displayEmptyObject — Called to display empty object arrays

The displayNonScalarObject Override
MATLAB calls the displayNonScalarObject method to display object arrays. The
override of this method in the EmployeeInfo class:

• Builds header text using convertDimensionsToString to obtain the array size and
getClassNameForHeader to get the class name with a link to the help for that class.

• Displays the modified header text.
• Loops through the elements in the array, building two different subheaders depending

on the individual object state. In the loop, this method:

• Detects handles to deleted objects (using the isvalid handle class method). Uses
getDeletedHandleText and getClassNameForHeader to build text for array
elements that are handles to deleted objects.

• Builds a custom subheader for valid object elements in the array
• Creates a PropertyGroup object containing the Name and Department properties

for valid objects

 Customize Display of Object Arrays

19-39

• Uses the displayPropertyGroups static method to generate the property display
for valid objects.

Here is the implementation of displayNonScalarObjects:
methods (Access = protected)
 function displayNonScalarObject(objAry)
 dimStr = matlab.mixin.CustomDisplay.convertDimensionsToString(objAry);
 cName = matlab.mixin.CustomDisplay.getClassNameForHeader(objAry);
 headerStr = [dimStr,' ',cName,' members:'];
 header = sprintf('%s\n',headerStr);
 disp(header)
 for ix = 1:length(objAry)
 o = objAry(ix);
 if ~isvalid(o)
 str1 = matlab.mixin.CustomDisplay.getDeletedHandleText;
 str2 = matlab.mixin.CustomDisplay.getClassNameForHeader(o);
 headerInv = [str1,' ',str2];
 tmpStr = [num2str(ix),'. ',headerInv];
 numStr = sprintf('%s\n',tmpStr);
 disp(numStr)
 else
 numStr = [num2str(ix),'. Employee:'];
 disp(numStr)
 propList = struct('Name',o.Name,...
 'Department',o.Department);
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 matlab.mixin.CustomDisplay.displayPropertyGroups(o,propgrp);
 end
 end
 end
end

The displayEmptyObject Override
MATLAB calls the displayEmptyObject method to display empty object arrays. The
implementation of this method in the EmployeeInfo class builds a custom header for
empty objects following these steps:

• Gets the array dimensions in character format using the
convertDimensionsToString static method.

• Gets text with the class name linked to the helpPopup function using the
getClassNameForHeader static method.

• Builds and displays the custom text for empty arrays.

methods (Access = protected)
 function displayEmptyObject(obj)
 dimstr = matlab.mixin.CustomDisplay.convertDimensionsToString(obj);
 className = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);

19 Customizing Object Display

19-40

 emptyHeader = [dimstr,' ',className,' with no employee information'];
 header = sprintf('%s\n',emptyHeader);
 disp(header)
 end
end

For example, an empty EmployeeInfo object displays like this:

Empt = EmployeeInfo.empty(0,5)

Empt =

0x5 EmployeeInfo with no employee information

Complete Class Listing
classdef EmployeeInfo < handle & matlab.mixin.CustomDisplay
 properties
 Name
 JobTitle
 Department
 Salary
 Password
 end
 methods
 function obj = EmployeeInfo
 obj.Name = input('Name: ');
 obj.JobTitle = input('Job Title: ');
 obj.Department = input('Department: ');
 obj.Salary = input('Salary: ');
 obj.Password = input('Password: ');
 end
 end
 methods (Access = protected)
 function displayNonScalarObject(objAry)
 dimStr = matlab.mixin.CustomDisplay.convertDimensionsToString(objAry);
 cName = matlab.mixin.CustomDisplay.getClassNameForHeader(objAry);
 headerStr = [dimStr,' ',cName,' members:'];
 header = sprintf('%s\n',headerStr);
 disp(header)
 for ix = 1:length(objAry)
 o = objAry(ix);
 if ~isvalid(o)
 str1 = matlab.mixin.CustomDisplay.getDeletedHandleText;
 str2 = matlab.mixin.CustomDisplay.getClassNameForHeader(o);
 headerInv = [str1,' ',str2];
 tmpStr = [num2str(ix),'. ',headerInv];
 numStr = sprintf('%s\n',tmpStr);
 disp(numStr)
 else
 numStr = [num2str(ix),'. Employee'];
 disp(numStr)
 propList = struct('Name',o.Name,...
 'Department',o.Department);

 Customize Display of Object Arrays

19-41

 propgrp = matlab.mixin.util.PropertyGroup(propList);
 matlab.mixin.CustomDisplay.displayPropertyGroups(o,propgrp);
 end
 end
 end

 function displayEmptyObject(obj)
 dimstr = matlab.mixin.CustomDisplay.convertDimensionsToString(obj);
 className = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);
 emptyHeader = [dimstr,' ',className,' with no employee information'];
 header = sprintf('%s\n',emptyHeader);
 disp(header)
 end
 end
end

See Also

Related Examples
• “Choose a Technique for Display Customization” on page 19-20

19 Customizing Object Display

19-42

Overloading the disp Function
In this section...
“Display Methods” on page 19-43
“Overloaded disp” on page 19-43
“Relationship Between disp and display” on page 19-43

Display Methods
Subclassing matlab.mixin.CustomDisplay is the best approach to customizing object
display. However, if you do not derive your class from matlab.mixin.CustomDisplay,
overload the disp function to change how MATLAB displays objects of your class.

MATLAB calls the display function whenever an object is referred to in a statement that
is not terminated by a semicolon. For example, the following statement creates the
variable a. MATLAB calls display, which displays the value of a in the command line.

a = 5

a =
 5

display then calls disp.

Overloaded disp
The built-in display function prints the name of the variable that is being displayed, if
an assignment is made, or otherwise uses ans as the variable name. Then display calls
disp to handle the actual display of the values.

If the variable that is being displayed is an object of a class that overloads disp, then
MATLAB always calls the overloaded method. MATLAB calls display with two
arguments and passes the variable name as the second argument.

Relationship Between disp and display
MATLAB invokes the built-in display function when the following occur:

 Overloading the disp Function

19-43

• MATLAB executes a statement that returns a value and is not terminated with a
semicolon.

• There is no left-side variable, then MATLAB prints ans = followed by the value.
• Code explicitly invokes the display function.

When invoking display:

• If the input argument is an existing variable, display prints the variable name and
equal sign, followed by the value.

• If the input is the result of an expression, display does not print ans =.

MATLAB invokes the built-in disp function when the following occurs:

• The built-in display function calls disp.
• Code explicitly invokes disp.

For empty built-in types (numeric types, char, struct, and cell) the display function
displays:

• [] — for numeric types
• "0x0 struct array with no fields." — for empty structs.
• "0x0 empty cell array" — for empty cell arrays.
• "0x0 empty char array" — for empty char arrays
• "0x0 empty string array" — for empty string arrays

disp differs from display in these ways:

• disp does not print the variable name or ans.
• disp prints nothing for built-in types (numeric types, char, struct, and cell) when

the value is empty.

See Also

Related Examples
• “Custom Display Interface” on page 19-2
• “Overload disp for DocPolynom” on page 20-17

19 Customizing Object Display

19-44

Defining Custom Data Types

20

Representing Polynomials with Classes
In this section...
“Object Requirements” on page 20-2
“DocPolynom Class Members” on page 20-2
“DocPolynom Class Synopsis” on page 20-4
“The DocPolynom Constructor” on page 20-13
“Remove Irrelevant Coefficients” on page 20-14
“Convert DocPolynom Objects to Other Types” on page 20-15
“Overload disp for DocPolynom” on page 20-17
“Display Evaluated Expression” on page 20-18
“Redefine Indexed Reference” on page 20-19
“Define Arithmetic Operators” on page 20-21

Object Requirements
This example implements a class to represent polynomials in the MATLAB language. The
design requirements are:

• Value class behavior—a polynomial object should behave like MATLAB numeric
variables when copied and passed to functions.

• Specialized display and indexing
• Objects can be scalar only. The specialization of display and indexing functionality

preclude normal array behavior.
• Arithmetic operations
• Double converter simplifying the use of polynomial object with existing MATLAB

functions that accept numeric inputs.

DocPolynom Class Members
The class definition specifies a property for data storage and defines a folder
(@DocPolynom) that contains the class definition.

The following table summarizes the properties defined for the DocPolynom class.

20 Defining Custom Data Types

20-2

DocPolynom Class Properties
Name Class Default Description
coef double [] Vector of polynomial coefficients

[highest order ... lowest order]

The following table summarizes the methods for the DocPolynom class.

DocPolynom Class Methods
Name Description
DocPolynom Class constructor
double Converts a DocPolynom object to a double (that is, returns its

coefficients in a vector)
char Creates a formatted display of the DocPolynom object as powers

of x and is used by the disp method
disp Determines how MATLAB displays DocPolynom objects on the

command line
subsref Enables you to specify a value for the independent variable as a

subscript, access the coef property with dot notation, and call
methods with dot notation.

plus Implements addition of DocPolynom objects
minus Implements subtraction of DocPolynom objects
mtimes Implements multiplication of DocPolynom objects

Using the DocPolynom Class

The following examples illustrate basic use of the DocPolynom class.

Create DocPolynom objects to represent the following polynomials. The argument to the
constructor function contains the polynomial coefficients and

.

p1 = DocPolynom([1 0 -2 -5])

p1 =
 x^3 - 2*x - 5

p2 = DocPolynom([2 0 3 2 -7])

 Representing Polynomials with Classes

20-3

p2 =
 2*x^4 + 3*x^2 + 2*x - 7

Find the roots of the polynomial by passing the coefficients to the roots function.

roots(p1.coef)

ans =

 2.0946 + 0.0000i
 -1.0473 + 1.1359i
 -1.0473 - 1.1359i

Add the two polynomials p1 and p2.

MATLAB calls the plus method defined for the DocPolynom class when you add two
DocPolynom objects.

p1 + p2

ans =

2*x^4 + x^3 + 3*x^2 - 12

DocPolynom Class Synopsis
Example Code Discussion
classdef DocPolynom Value class that implements a

data type for polynomials.
 properties
 coef
 end

Vector of polynomial coefficients
[highest order ... lowest order]

 methods For general information about
methods, see “Ordinary
Methods” on page 9-8

20 Defining Custom Data Types

20-4

Example Code Discussion
 function obj = DocPolynom(c)
 if nargin > 0
 if isa(c,'DocPolynom')
 obj.coef = c.coef;
 else
 obj.coef = c(:).';
 end
 end
 end

Class constructor creates objects
using:

• Coefficient vector of existing
object

• Coefficient vector passed as
argument

See “The DocPolynom
Constructor” on page 20-13

 function obj = set.coef(obj,val)
 if ~isa(val,'double')
 error('Coefficients must be doubles')
 end
 ind = find(val(:).'~=0);
 if ~isempty(ind);
 obj.coef = val(ind(1):end);
 else
 obj.coef = val;
 end
 end

Set method for coef property:

• Allows coefficients only of
type double

• Removes leading zeros from
the coefficient vector.

See “Remove Irrelevant
Coefficients” on page 20-14

 function c = double(obj)
 c = obj.coef;
 end

Convert DocPolynom object to
double by returning the
coefficients.

See “Convert DocPolynom
Objects to Other Types” on page
20-15

 Representing Polynomials with Classes

20-5

Example Code Discussion
function str = char(obj)
 if all(obj.coef == 0)
 s = '0';
 str = s;
 return
 else
 d = length(obj.coef)-1;
 s = cell(1,d);
 ind = 1;
 for a = obj.coef;
 if a ~= 0;
 if ind ~= 1
 if a > 0
 s(ind) = {' + '};
 ind = ind + 1;
 else
 s(ind) = {' - '};
 a = -a;
 ind = ind + 1;
 end
 end
 if a ~= 1 || d == 0
 if a == -1
 s(ind) = {'-'};
 ind = ind + 1;
 else
 s(ind) = {num2str(a)};
 ind = ind + 1;
 if d > 0
 s(ind) = {'*'};
 ind = ind + 1;
 end
 end
 end
 if d >= 2
 s(ind) = {['x^' int2str(d)]};
 ind = ind + 1;
 elseif d == 1
 s(ind) = {'x'};
 ind = ind + 1;
 end
 end

Convert DocPolynom object to
char that represents the
expression:

y = f(x)

See “Convert DocPolynom
Objects to Other Types” on page
20-15

20 Defining Custom Data Types

20-6

Example Code Discussion
 d = d - 1;
 end
 end
 str = [s{:}];
end
 function disp(obj)
 c = char(obj);
 if iscell(c)
 disp([' ' c{:}])
 else
 disp(c)
 end
 end

Overload disp function. Display
objects as output of char
method.

For information about this code,
see “Overload disp for
DocPolynom” on page 20-17

 function dispPoly(obj,x)
 p = char(obj);
 e = @(x)eval(p);
 y = zeros(length(x));
 disp(['y = ',p])
 for k = 1:length(x)
 y(k) = e(x(k));
 disp([' ',num2str(y(k)),...
 ' = f(x = ',...
 num2str(x(k)),')'])
 end
 end

Return evaluated expression
with formatted output.

Uses output of char method to
evaluate polynomial at specified
values of independent variable.

For information about this code,
see “Display Evaluated
Expression” on page 20-18

 Representing Polynomials with Classes

20-7

Example Code Discussion
 function b = subsref(a,s)
 switch s(1).type
 case '()'
 ind = s.subs{:};
 b = polyval(a.coef,ind);
 case '.'
 switch s(1).subs
 case 'coef'
 b = a.coef;
 case 'disp'
 disp(a)
 otherwise
 if length(s)>1
 b = a.(s(1).subs)(s(2).subs{:});
 else
 b = a.(s.subs);
 end
 end
 otherwise
 error('Specify value for x as obj(x)')
 end
 end

Redefine indexed reference for
DocPolynom objects.

For information about this code,
see “Redefine Indexed
Reference” on page 20-19

20 Defining Custom Data Types

20-8

Example Code Discussion
 function r = plus(obj1,obj2)
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 k = length(obj2.coef) - length(obj1.coef);
 zp = zeros(1,k);
 zm = zeros(1,-k);
 r = DocPolynom([zp,obj1.coef] + [zm,obj2.coef]);
 end

 function r = minus(obj1,obj2)
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 k = length(obj2.coef) - length(obj1.coef);
 zp = zeros(1,k);
 zm = zeros(1,-k);
 r = DocPolynom([zp,obj1.coef] - [zm,obj2.coef]);
 end

 function r = mtimes(obj1,obj2)
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 r = DocPolynom(conv(obj1.coef,obj2.coef));
 end
 end

Define three arithmetic
operators:

• Polynomial addition
• Polynomial subtraction
• Polynomial multiplication

For information about this code,
see “Define Arithmetic
Operators” on page 20-21.

For general information about
defining operators, see
“Operator Overloading” on page
18-47

 end
end

end statements for methods and
for classdef.

Expand for Class Code

classdef DocPolynom
 % Documentation example
 % A value class that implements a data type for polynomials
 % See Implementing a Class for Polynomials in the
 % MATLAB documentation for more information.

 properties
 coef
 end

 % Class methods
 methods
 function obj = DocPolynom(c)

 Representing Polynomials with Classes

20-9

 if nargin > 0
 if isa(c,'DocPolynom')
 obj.coef = c.coef;
 else
 obj.coef = c(:).';
 end
 end
 end % DocPolynom
 function obj = set.coef(obj,val)
 if ~isa(val,'double')
 error('Coefficients must be doubles')
 end
 % Remove leading zeros
 ind = find(val(:).'~=0);
 if ~isempty(ind);
 obj.coef = val(ind(1):end);
 else
 obj.coef = val;
 end
 end % set.coef

 function c = double(obj)
 c = obj.coef;
 end % double

 function str = char(obj)
 % Created a formated display of the polynom
 % as powers of x
 if all(obj.coef == 0)
 s = '0';
 str = s;
 return
 else
 d = length(obj.coef)-1;
 s = cell(1,d);
 ind = 1;
 for a = obj.coef;
 if a ~= 0;
 if ind ~= 1
 if a > 0
 s(ind) = {' + '};
 ind = ind + 1;
 else
 s(ind) = {' - '};

20 Defining Custom Data Types

20-10

 a = -a; %#ok<FXSET>
 ind = ind + 1;
 end
 end
 if a ~= 1 || d == 0
 if a == -1
 s(ind) = {'-'};
 ind = ind + 1;
 else
 s(ind) = {num2str(a)};
 ind = ind + 1;
 if d > 0
 s(ind) = {'*'};
 ind = ind + 1;
 end
 end
 end
 if d >= 2
 s(ind) = {['x^' int2str(d)]};
 ind = ind + 1;
 elseif d == 1
 s(ind) = {'x'};
 ind = ind + 1;
 end
 end
 d = d - 1;
 end
 end
 str = [s{:}];
 end % char

 function disp(obj)
 % DISP Display object in MATLAB syntax
 c = char(obj);
 if iscell(c)
 disp([' ' c{:}])
 else
 disp(c)
 end
 end % disp

 function dispPoly(obj,x)
 % evaluate obj at x
 p = char(obj);

 Representing Polynomials with Classes

20-11

 e = @(x)eval(p);
 y = zeros(length(x));
 disp(['y = ',p])
 for k = 1:length(x)
 y(k) = e(x(k));
 disp([' ',num2str(y(k)),...
 ' = f(x = ',...
 num2str(x(k)),')'])
 end
 end

 function b = subsref(a,s)
 % SUBSREF Implementing the following syntax:
 % obj([1 ...])
 % obj.coef
 % obj.disp
 % out = obj.method(args)
 % out = obj.method
 switch s(1).type
 case '()'
 ind = s.subs{:};
 b = polyval(a.coef,ind);
 case '.'
 switch s(1).subs
 case 'coef'
 b = a.coef;
 case 'disp'
 disp(a)
 otherwise
 if length(s)>1
 b = a.(s(1).subs)(s(2).subs{:});
 else
 b = a.(s.subs);
 end
 end
 otherwise
 error('Specify value for x as obj(x)')
 end
 end % subsref

 function r = plus(obj1,obj2)
 % PLUS Implement obj1 + obj2 for DocPolynom
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);

20 Defining Custom Data Types

20-12

 k = length(obj2.coef) - length(obj1.coef);
 zp = zeros(1,k);
 zm = zeros(1,-k);
 r = DocPolynom([zp,obj1.coef] + [zm,obj2.coef]);
 end % plus

 function r = minus(obj1,obj2)
 % MINUS Implement obj1 - obj2 for DocPolynoms.
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 k = length(obj2.coef) - length(obj1.coef);
 zp = zeros(1,k);
 zm = zeros(1,-k);
 r = DocPolynom([zp,obj1.coef] - [zm,obj2.coef]);
 end % minus

 function r = mtimes(obj1,obj2)
 % MTIMES Implement obj1 * obj2 for DocPolynoms.
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 r = DocPolynom(conv(obj1.coef,obj2.coef));
 end % mtimes
 end % methods
end % classdef

The DocPolynom Constructor
The following function is the DocPolynom class constructor, which is in the file
@DocPolynom/DocPolynom.m:

methods
 function obj = DocPolynom(c)
 if isa(c,'DocPolynom')
 obj.coef = c.coef;
 else
 obj.coef = c(:).';
 end
 end
end

Constructor Calling Syntax

It is possible to all the DocPolynom constructor with two different arguments:

 Representing Polynomials with Classes

20-13

• Input argument is a DocPolynom object — If you call the constructor function with an
input argument that is already a DocPolynom object, the constructor returns a new
DocPolynom object with the same coefficients as the input argument. The isa
function checks for this input.

• Input argument is a coefficient vector — If the input argument is not a DocPolynom
object, the constructor attempts to reshape the values into a vector and assign them to
the coef property.

The coef property set method restricts property values to doubles. See “Remove
Irrelevant Coefficients” on page 20-14 for a description of the property set method.

An example use of the DocPolynom constructor is the statement:

p = DocPolynom([1 0 -2 -5])
p =
 x^3 - 2*x -5

This statement creates an instance of the DocPolynom class with the specified
coefficients. Note that the display of the object shows the equivalent polynomial using
MATLAB language syntax. The DocPolynom class implements this display using the disp
and char class methods.

Remove Irrelevant Coefficients
MATLAB software represents polynomials as row vectors containing coefficients ordered
by descending powers. Zeros in the coefficient vector represent terms that drop out of the
polynomial. Leading zeros, therefore, can be ignored when forming the polynomial.

Some DocPolynom class methods use the length of the coefficient vector to determine
the degree of the polynomial. It is useful, therefore, to remove leading zeros from the
coefficient vector so that its length represents the true value.

The DocPolynom class stores the coefficient vector in a property that uses a set method
to remove leading zeros from the specified coefficients before setting the property value.

methods
 function obj = set.coef(obj,val)
 if ~isa(val,'double')
 error('Coefficients must be doubles')
 end
 ind = find(val(:).'~=0);
 if ~isempty(ind);

20 Defining Custom Data Types

20-14

 obj.coef = val(ind(1):end);
 else
 obj.coef = val;
 end
 end
end

Convert DocPolynom Objects to Other Types
The DocPolynom class defines two methods to convert DocPolynom objects to other
classes:

• double — Converts to the double numeric type so functions can perform
mathematical operations on the coefficients.

• char — Converts to characters used to format output for display in the command
window

The Double Converter

The double converter method for the DocPolynom class simply returns the coefficient
vector:

methods
 function c = double(obj)
 c = obj.coef;
 end
end

For the DocPolynom object p:

p = DocPolynom([1 0 -2 -5]);

the statement:

c = double(p)

returns:

c=
 1 0 -2 -5

which is of class double:

 Representing Polynomials with Classes

20-15

class(c)
ans =
 double

The Character Converter

The char method produces a char vector that represents the polynomial displayed as
powers of x. The char vector returned is a syntactically correct MATLAB expression.

The char method uses a cell array to collect the char vector components that make up
the displayed polynomial.

The disp method uses the char method to format the DocPolynom object for display.
The evalPoly method uses char to create the MATLAB expression to evaluate.

Users of DocPolynom objects are not likely to call the char or disp methods directly, but
these methods enable the DocPolynom class to behave like other data classes in
MATLAB.

Here is the char method.
methods
 function str = char(obj)
 if all(obj.coef == 0)
 s = '0';
 str = s;
 return
 else
 d = length(obj.coef)-1;
 s = cell(1,d);
 ind = 1;
 for a = obj.coef;
 if a ~= 0;
 if ind ~= 1
 if a > 0
 s(ind) = {' + '};
 ind = ind + 1;
 else
 s(ind) = {' - '};
 a = -a;
 ind = ind + 1;
 end
 end
 if a ~= 1 || d == 0
 if a == -1
 s(ind) = {'-'};
 ind = ind + 1;
 else
 s(ind) = {num2str(a)};
 ind = ind + 1;

20 Defining Custom Data Types

20-16

 if d > 0
 s(ind) = {'*'};
 ind = ind + 1;
 end
 end
 end
 if d >= 2
 s(ind) = {['x^' int2str(d)]};
 ind = ind + 1;
 elseif d == 1
 s(ind) = {'x'};
 ind = ind + 1;
 end
 end
 d = d - 1;
 end
 end
 str = [s{:}];
 end
end

Overload disp for DocPolynom
To provide a more useful display of DocPolynom objects, this class overloads disp in the
class definition.

This disp method relies on the char method to produce a text representation of the
polynomial, which it then displays on the screen.

The char method returns a cell array or the character '0' if the coefficients are all zero.

methods
 function disp(obj)
 c = char(obj);
 if iscell(c)
 disp([' ' c{:}])
 else
 disp(c)
 end
 end
end

When MATLAB Calls the disp Method

The statement:

p = DocPolynom([1 0 -2 -5])

 Representing Polynomials with Classes

20-17

creates a DocPolynom object. Because the statement is not terminated with a semicolon,
the resulting output is displayed on the command line:

p =
 x^3 - 2*x - 5

Display Evaluated Expression
The char converter method forms a MATLAB expression for the polynomial represented
by a DocPolynom object. The dispPoly method evaluates the expression returned by
the char method with a specified value for x.

methods
 function dispPoly(obj,x)
 p = char(obj);
 e = @(x)eval(p);
 y = zeros(length(x));
 disp(['y = ',p])
 for k = 1:length(x)
 y(k) = e(x(k));
 disp([' ',num2str(y(k)),...
 ' = f(x = ',...
 num2str(x(k)),')'])
 end
 end
end

Create a DocPolynom object p:

p = DocPolynom([1 0 -2 -5])

p =

x^3 - 2*x - 5

Evaluate the polynomial at x equal to three values, [3 5 9]:

dispPoly(p,[3 5 9])

y = x^3 - 2*x - 5
 16 = f(x = 3)
 110 = f(x = 5)
 706 = f(x = 9)

20 Defining Custom Data Types

20-18

Redefine Indexed Reference
The DocPolynom class redefines indexed reference to support the use of objects
representing polynomials. In the DocPolynom class, a subscripted reference to an object
causes an evaluation of the polynomial with the value of the independent variable equal to
the subscript.

For example, given the following polynomial:

Create a DocPolynom object p:

p = DocPolynom([1 0 -2 -5])

p =
 x^3 - 2*x - 5

The following subscripted expression evaluates the value of the polynomial at x = 3 and
at x = 4, and returns the resulting values:

p([3 4])

ans =
 16 51

Indexed Reference Design Objectives

Redefine the default subscripted reference behavior by implementing a subsref method.

If a class defines a subsref method, MATLAB calls this method for objects of this class
whenever a subscripted reference occurs. The subsref method must define all the
indexed reference behaviors, not just a specific case that you want to change.

The DocPolynom subsref method implements the following behaviors:

• p(x = [a1...an]) — Evaluate polynomial at x = a.
• p.coef — Access coef property value
• p.disp — Display the polynomial as a MATLAB expression without assigning an

output.
• obj = p.method(args) — Use dot notation to call methods arguments and return a
modified object.

 Representing Polynomials with Classes

20-19

• obj = p.method — Use dot notation to call methods without arguments and return a
modified object.

subsref Implementation Details

The subsref method overloads the subsref function.

For example, consider a call to the polyval function:

p = DocPolynom([1 0 -2 -5])
p =
 x^3 - 2*x - 5
polyval(p.coef,[3 5 7])
ans =
 16 110 324

The polyval function requires the:

• Polynomial coefficients
• Values of the independent variable at which to evaluate the polynomial

The polyval function returns the value of f(x) at these values. subsref calls polyval
through the statements:

case '()'
 ind = s.subs{:};
 b = polyval(a.coef,ind);

When implementing subsref to support method calling with arguments using dot
notation, both the type and subs structure fields contain multiple elements.

The subsref method implements all subscripted reference explicitly, as show in the
following code listing.

methods
 function b = subsref(a,s)
 switch s(1).type
 case '()'
 ind = s.subs{:};
 b = polyval(a.coef,ind);
 case '.'
 switch s(1).subs
 case 'coef'
 b = a.coef;

20 Defining Custom Data Types

20-20

 case 'disp'
 disp(a)
 otherwise
 if length(s)>1
 b = a.(s(1).subs)(s(2).subs{:});
 else
 b = a.(s.subs);
 end
 end
 otherwise
 error('Specify value for x as obj(x)')
 end
 end
end

Define Arithmetic Operators
Several arithmetic operations are meaningful on polynomials. The DocPolynom class
implements these methods:

Method and Syntax Operator Implemented
plus(a,b) Addition
minus(a,b) Subtraction
mtimes(a,b) Matrix multiplication

When overloading arithmetic operators, consider the data types you must support. The
plus, minus, andmtimes methods are defined for the DocPolynom class to handle
addition, subtraction, and multiplication on DocPolynom — DocPolynom and
DocPolynom — double combinations of operands.

Define + Operator

If either p or q is a DocPolynom object, this expression:

p + q

Generates a call to a function @DocPolynom/plus, unless the other object is of higher
precedence.

The following method overloads the plus (+) operator for the DocPolynom class:
methods
 function r = plus(obj1,obj2)

 Representing Polynomials with Classes

20-21

 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 k = length(obj2.coef) - length(obj1.coef);
 zp = zeros(1,k);
 zm = zeros(1,-k);
 r = DocPolynom([zp,obj1.coef] + [zm,obj2.coef]);
 end
end

Here is how the function works:

• Ensure that both input arguments are DocPolynom objects so that expressions such
as

p + 1

that involve both a DocPolynom and a double, work correctly.
• Access the two coefficient vectors and, if necessary, pad one of them with zeros to

make both the same length. The actual addition is simply the vector sum of the two
coefficient vectors.

• Call the DocPolynom constructor to create a properly typed object that is the result of
adding the polynomials.

Define - Operator

Implement the minus operator (-) using the same approach as the plus (+) operator.

The minus method computes p - q. The dominant argument must be a DocPolynom
object.
methods
 function r = minus(obj1,obj2)
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 k = length(obj2.coef) - length(obj1.coef);
 zp = zeros(1,k);
 zm = zeros(1,-k);
 r = DocPolynom([zp,obj1.coef] - [zm,obj2.coef]);
 end
end

Define the * Operator

Implement the mtimes method to compute the product p*q. The mtimes method
implements matrix multiplication since the multiplication of two polynomials is the
convolution (conv) of their coefficient vectors:

20 Defining Custom Data Types

20-22

methods
 function r = mtimes(obj1,obj2)
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 r = DocPolynom(conv(obj1.coef,obj2.coef));
 end
end

Using the Arithmetic Operators

Given the DocPolynom object:

p = DocPolynom([1 0 -2 -5]);

The following two arithmetic operations call the DocPolynom plus and mtimes methods:

q = p+1;
r = p*q;

to produce

q =
 x^3 - 2*x - 4

r =
x^6 - 4*x^4 - 9*x^3 + 4*x^2 + 18*x + 20

 Representing Polynomials with Classes

20-23

Designing Related Classes

21

A Class Hierarchy for Heterogeneous Arrays
In this section...
“Interfaces Based on Heterogeneous Arrays” on page 21-2
“Define Heterogeneous Hierarchy” on page 21-2
“Assets Class” on page 21-5
“Stocks Class” on page 21-7
“Bonds Class” on page 21-9
“Cash Class” on page 21-10
“Default Object” on page 21-12
“Operating on an Assets Array” on page 21-14

Interfaces Based on Heterogeneous Arrays
A heterogeneous class hierarchy lets you create arrays containing objects of different
classes that are related though inheritance. You can define class methods that operate on
these heterogeneous arrays as a whole.

A class design based on heterogeneous arrays provides a more convenient interface than,
for example, extracting elements from a cell array and operating on these elements
individually. For more information on the design of class hierarchies that support
heterogeneous arrays, see “Designing Heterogeneous Class Hierarchies” on page 10-24.

All heterogeneous hierarchies derive from matlab.mixin.Heterogeneous.

Define Heterogeneous Hierarchy

Note This example does not use valid terminology or techniques for managing financial
assets. The purpose of this example is only to illustrate techniques for defining
heterogeneous class hierarchies.

This example implements a system of classes to represent financial assets, such as stocks,
bonds, and cash. Classes to represent categories of assets have certain common
requirements. Each instance has one of the following:

21 Designing Related Classes

21-2

• Textual description
• Type (stock, bond, or cash)
• Means to determine the current value of the asset

Heterogeneous arrays of these objects need methods that can operate on the whole array.
These operations include:

• Creating a table of information about all assets contained in the array
• Graphing the relative contribution of each asset type contained in the array

These requirements are factored into the class that is the root of the hierarchy. The root
class derives from matlab.mixin.Heterogeneous. In the following diagram, the
Assets class is the root of the hierarchy. The Stocks, Bonds, and Cash classes provide
the specialization required for each type of asset.

 A Class Hierarchy for Heterogeneous Arrays

21-3

21 Designing Related Classes

21-4

Assets Class
The Assets class:

• Derives directly from matlab.mixin.Heterogeneous
• Is the root of the heterogeneous hierarchy
• Is abstract
• Is the class of heterogeneous arrays composed of any mixture of Stock, Bond, and

Cash objects

Properties

The Assets class defines two properties:

• Description — A general description of the individual asset constrained to be of
class char.

• Type — The type of asset defined as an abstract property that each subclass
implements.

Methods

The Assets class defines these methods:

• pie — A sealed method that creates a pie chart showing the relative mix of asset
types.

• makeReport — A sealed method that creates a report listing the assets.
• getCurrentValue — An abstract method that each concrete subclass must

implement to return the current value of the asset.
• getDefaultScalarElement — matlab.mixin.Heterogeneous class method

overridden in the Assets class to specify a default object. The Assets class is
abstract so it cannot be used as the default object. For more information, see “Default
Object” on page 21-12.

Methods in Heterogeneous Hierarchies

Methods defined by the Assets class are either:

• Concrete methods (fully implemented) that subclasses do not override
• Abstract methods (signatures only) that subclasses implement

 A Class Hierarchy for Heterogeneous Arrays

21-5

Concrete methods defined by superclasses in a heterogeneous hierarchy must specify the
Sealed attribute. Sealing these methods prevents subclasses from overriding methods
implemented by the superclass. When calling methods on a heterogeneous array,
MATLAB calls the methods defined by the class of the array (Assets in this example).

The pie and makeReport methods are examples of sealed methods that operate on
heterogeneous arrays composed of Stock, Bond, and Cash objects.

Abstract methods defined by the superclasses in a heterogeneous hierarchy must specify
the Abstract attribute. Defining an abstract method in a superclass ensures that
concrete subclasses have an implementation for that exact method name. Use these
methods element-wise so that each object calls its own method.

The getCurrentValue method is an example of an abstract method that is implemented
by each subclass to get the current value of each asset.

Each type of subclass object calculates its current value in a different way. If you add
another category of asset by adding another subclass to the hierarchy, this class must
implement its own version of a getCurrentValue method. Because all subclasses
implement a getCurrentValue method, the pie and makeReport methods work with
newly added subclasses.

For more information on the Sealed and Abstract method attributes, see “Method
Attributes” on page 9-5.

Assets Class Code

The Assets class and other classes in the hierarchy are contained in a package called
financial.

classdef Assets < matlab.mixin.Heterogeneous
 % file: +financial.@Assets/Assets.m
 properties
 Description char = 'Assets'
 end
 properties (Abstract, SetAccess = private)
 Type
 end
 methods (Abstract)
 % Not implemented by Assets class
 value = getCurrentValue(obj)
 end
 methods (Static, Sealed, Access = protected)

21 Designing Related Classes

21-6

 function defaultObject = getDefaultScalarElement
 defaultObject = financial.DefaultAsset;
 end
 end
 methods (Sealed)
 % Implemented in separate files
 % +financial.@Assets/pie.m
 % +financial.@Assets/makeReport.m
 pie(assetArray)
 makeReport(assetArray)
 end
end

For code listings for pie and makeReport, see “Operating on an Assets Array” on page
21-14.

Stocks Class
The Stocks class represents a specific type of financial asset. It is a concrete class that
implements the abstract members defined by the Assets class, and defines class
properties and methods specific to this type of asset.

Properties

The Stocks class defines these properties:

• NumShares — The number of shares held for this asset.
• Symbol — The ticker symbol corresponding to this stock.
• Type — Stocks class implementation of the abstract property defined by the Assets

class. This concrete property must use the same attributes as the abstract version
(that is, SetAccess private).

• SharePrice — Dependent property for the price per share. The get.SharePrice
method obtains the current share price from web services when this property is
queried.

Methods

The Stocks class defines these methods:

• Stocks — The constructor assigns property values and supports a default constructor
called with no input arguments.

 A Class Hierarchy for Heterogeneous Arrays

21-7

• getCurrentValue — This method is the Stocks class implementation of the abstract
method defined by the Assets class. It returns the current value of this asset.

• get.SharePrice — The property get method for the dependent SharePrice
property returns the current share price of this stock. For information on how to
access web services from MATLAB, see the webread function.

Stocks Class Code

classdef Stocks < financial.Assets
 properties
 NumShares double = 0
 Symbol string
 end
 properties (SetAccess = private)
 Type = "Stocks"
 end
 properties (Dependent)
 SharePrice double
 end
 methods
 function sk = Stocks(description,numshares,symbol)
 if nargin == 0
 description = '';
 numshares = 0;
 symbol = '';
 end
 sk.Description = description;
 sk.NumShares = numshares;
 sk.Symbol = symbol;
 end
 function value = getCurrentValue(sk)
 value = sk.NumShares*sk.SharePrice;
 end
 function pps = get.SharePrice(sk)
 % Implement web access to obtain
 % Current price per share
 % Returning dummy value
 pps = 1;
 end
 end
end

21 Designing Related Classes

21-8

Bonds Class
The Bonds class represents a specific type of financial asset. It is a concrete class that
implements the abstract members defined by the Assets class and defines class
properties and methods specific to this type of asset.

Properties

The Bonds class defines these properties:

• FaceValue — Face value of the bond.
• Yield — Annual interest rate of the bond.
• Type — Bonds class implementation of the abstract property defined by the Assets

class. This concrete property must use the same attributes as the abstract version
(that is, SetAccess private).

• CurrentYield — Dependent property for the current yield, The get.CurrentYield
property get method obtains the value from web services.

Methods

The Bonds class defines these methods:

• Bonds — The constructor assigns property values and supports a default constructor
called with no input arguments.

• getCurrentVlaue — This method is the Bonds class implementation of the abstract
method defined by the Assets class. It returns the current value of this asset.

• get.CurrentYield — The property get method for the dependent CurrentYield
property returns the current yield on this bond. For information on how to access web
serviced from MATLAB, see the webread function.

Bonds Class Code

classdef Bonds < financial.Assets
 properties
 FaceValue double = 0
 Yield double = 0
 end
 properties (SetAccess = private)
 Type = "Bonds"
 end
 properties (Dependent)

 A Class Hierarchy for Heterogeneous Arrays

21-9

 CurrentYield double = 0
 end
 methods
 function b = Bonds(description,facevalue,yield)
 if nargin == 0
 description = '';
 facevalue = 0;
 yield = 0;
 end
 b.Description = description;
 b.FaceValue = facevalue;
 b.Yield = yield;
 b.Type = AssetTypes.Bonds;
 end
 function mv = getCurrentValue(b)
 y = b.Yield;
 cy = b.CurrentYield;
 if cy <= 0 || y <= 0
 mv = b.FaceValue;
 else
 mv = b.FaceValue*y/cy;
 end
 end
 function r = get.CurrentYield(b)
 % Implement web access to obtain
 % Current yield for this bond
 % Returning dummy value
 r = 0.24;
 end
 end
end

Cash Class
The Cash class represents a specific type of financial asset. It is a concrete class that
implements the abstract members defined by the Assets class and defines class
properties and methods specific to this type of asset.

Properties

The Cash class defines these properties:

• Amount — The amount of cash held in this asset.

21 Designing Related Classes

21-10

• Type — Cash class implementation of the abstract property defined by the Assets
class. This concrete property must use the same attributes as the abstract version
(that is, SetAccess private).

Methods

The Cash class defines these methods:

• Cash — The constructor assigns property values and supports a default constructor
called with no input arguments.

• getCurrentValue — This method is the Cash class implementation of the abstract
method defined by the Assets class. It returns the current value of this asset.

• save — This method adds the specified amount of cash to the existing amount and
returns a new Cash object with the current amount.

• spend — This method deducts the specified amount from the current amount and
returns a new Cash object with the current amount.

Cash Class Code
classdef Cash < financial.Assets
 properties
 Amount double = 0
 end
 properties (SetAccess = private)
 Type = "Cash"
 end
 methods
 function c = Cash(description,amount)
 if nargin == 0
 description = '';
 amount = 0;
 end
 c.Description = description;
 c.Amount = amount;
 end
 function value = getCurrentValue(c)
 value = c.Amount;
 end
 function c = save(c,amount)
 newValue = c.Amount + amount;
 c.Amount = newValue;
 end
 function c = spend(c,amount)

 A Class Hierarchy for Heterogeneous Arrays

21-11

 newValue = c.Amount - amount;
 if newValue < 0
 c.Amount = 0;
 disp('Your balance is $0.00')
 else
 c.Amount = newValue;
 end
 end
 end
end

Default Object
The design of this class hierarchy uses an abstract root class (Assets). Therefore, the
Assets class must specify a concrete class to use as a default object by overriding
getDefaultScalarElement. In this case, options include:

• Use one of the existing concrete classes for the default object.
• Define a concrete class in the hierarchy to use for the default object.

This implementation adds the DefaultAsset class to the hierarchy as a subclass of the
Assets class. MATLAB creates objects of this class when:

• Creating arrays using indexed assignment with gaps in index numbers
• Loading heterogeneous arrays from MAT-files when MATLAB cannot find the class of

an array element.

This diagram shows the addition of the DefaultAsset class:

21 Designing Related Classes

21-12

 A Class Hierarchy for Heterogeneous Arrays

21-13

DefaultAsset Class Code
classdef DefaultAsset < financial.Assets
 % file: +financial.@DefaultAsset/DefaultAsset.m
 properties (SetAccess = private)
 Type = "DefaultAsset"
 end
 methods
 function obj = DefaultAsset
 obj.Description = 'Place holder';
 end
 function value = getCurrentValue(~)
 value = 0;
 end
 end
end

Operating on an Assets Array
The Assets class defines these methods to operate on heterogeneous arrays of asset
objects:

• pie — Creates a pie chart showing the mix of asset types in the array.
• makeReport — Uses the MATLAB table object to display a table of asset

information.

To operate on a heterogeneous array, a method must be defined for the class of the
heterogeneous array and must be sealed. In this case, the class of heterogeneous arrays
is always the Assets class. MATLAB does not use the class of the individual elements of
the heterogeneous array when dispatching to methods.

makeReport Method Code

The Assets class makeReport method builds a table using the common properties and
getCurrentValue method for each object in the array.

function makeReport(obj)
 numMembers = length(obj);
 descs = cell(1,numMembers);
 types(numMembers) = "";
 values(numMembers) = 0;
 for k = 1:numMembers
 descs{k} = obj(k).Description;

21 Designing Related Classes

21-14

 types(k) = obj(k).Type;
 values(k) = obj(k).getCurrentValue;
 end
 t = table;
 t.Description = descs';
 t.Type = types';
 t.Value = values';
 disp(t)
end

The Assets class pie method calls the getCurrentValue method element-wise on
objects in the array to obtain the data for the pie chart.

pie Method Code

function pie(assetArray)
 stockAmt = 0; bondAmt = 0; cashAmt = 0;
 for k=1:length(assetArray)
 if isa(assetArray(k),'financial.Stocks')
 stockAmt = stockAmt + assetArray(k).getCurrentValue;
 elseif isa(assetArray(k),'financial.Bonds')
 bondAmt = bondAmt + assetArray(k).getCurrentValue;
 elseif isa(assetArray(k),'financial.Cash')
 cashAmt = cashAmt + assetArray(k).getCurrentValue;
 end
 end
 k = 1;
 if stockAmt ~= 0
 label(k) = {'Stocks'};
 pieVector(k) = stockAmt;
 k = k +1;
 end
 if bondAmt ~= 0
 label(k) = {'Bonds'};
 pieVector(k) = bondAmt;
 k = k +1;
 end
 if cashAmt ~= 0
 label(k) = {'Cash'};
 pieVector(k) = cashAmt;
 end
 pie(pieVector,label)
 tv = stockAmt + bondAmt + cashAmt;
 stg = {['Total Value of Assets: $',num2str(tv,'%0.2f')]};

 A Class Hierarchy for Heterogeneous Arrays

21-15

 title(stg,'FontSize',10)
end

Create an Assets Array

These statements create a heterogeneous array by concatenating the Stocks, Bonds,
and Cash objects. Calling the makeReport and pie methods creates the output shown.

s = financial.Stocks('Acme Motor Company',100,string('A'));
b = financial.Bonds('3 Month T',700,0.3);
c(1) = financial.Cash('Bank Account',500);
c(2) = financial.Cash('Gold',500);
assetArray = [s,b,c];
makeReport(assetArray)
pie(assetArray)

 Description Type Value
 ____________________ ______ ______

 'Acme Motor Company' Stocks 1232.5
 '3 Month T' Bonds 807.69
 'Bank Account' Cash 500
 'Gold' Cash 500

21 Designing Related Classes

21-16

See Also

Related Examples
• “Designing Heterogeneous Class Hierarchies” on page 10-24
• “Validate Property Values” on page 8-26
• “Set and Get Methods for Dependent Properties” on page 8-64

 See Also

21-17

